1)def求解具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程
设 是定义在
上的连续对称核函数,
非齐次第二类弗雷德霍姆积分算子方程的形式为:
,
其中是未知函数,
是给定的连续函数,
是参数。
2)def其特徵值是否一致收斂
定义:
对于由连续对称核生成的积分算子
,
其特征值序列若满足对于任意的
,
存在,使得当
时,对于所有
,
都有,则称特征值序列
一致收敛。
证明:
由希尔伯特 - 施密特定理,对于由连续对称核定义的积分算子
,
存在由特征向量 构成的
的标准正交基,
对应的特征值满足
。
设是紧自伴算子,其特征值
满足
。
对于任意,因为
,
存在,使得当
时,
。
那么对于,有
。
所以特征值序列一致收敛到 0。
其柯西判斷
柯西准则:对于序列,
它收敛的充要条件是对于任意的,存在
,
使得当时,
。
在特征值序列的情况下,前面已证明其满足柯西准则,所以特征值序列收敛。
3)def具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程,要麼對所有連續函數f有解,要麼齊次方程有平凡解
证明思路:
设非齐次方程,
对应的齐次方程为。
由希尔伯特 - 施密特定理,积分算子(
)是紧自伴算子,
存在标准正交基和特征值
。
假设齐次方程仅有平凡解,即对于不是特征值时,
齐次方程只有解
。
对于非齐次方程,将 和
按特征向量展开:
,
,
其中,
。
代入非齐次方程可得:。
比较系数得。
因为 不是特征值,
,所以
,从而非齐次方程有解。
反之,若齐次方程有非平凡解,
即存在非零解使得
,
那么对于某些,非齐次方程可能无解。
例如,若与齐次方程非平凡解的正交补空间不匹配时,非齐次方程无解。
4)计算例题
考虑积分方程,这里
是连续对称核,
。
设,
。
先求积分算子 (
)的特征值和特征向量。
设是特征函数,
是特征值,则
。
设,代入得
。
所以,
,
,解得特征值
,特征向量
。
将,
代入原非齐次方程:
。
计算 ,则
。
整理得,
当 时,
,
所以是方程的解。
当 时,齐次方程
有非平凡解
,
此时原非齐次方程对于 无解(因为代入后会出现矛盾)。