【机器学习】西瓜书习题3.5Python编程实现线性判别分析,并给出西瓜数据集 3.0α上的结果

参考代码
结合自己的理解,添加注释。

代码

  1. 导入相关的库
import numpy as np
import pandas as pd
import matplotlib
from matplotlib import pyplot as plt
  1. 导入数据,进行数据处理和特征工程
    得到数据集 D = { ( x i , y i ) } i = 1 m , y i ∈ { 0 , 1 } D=\{ (x_i,y_i) \}_{i=1}^m, y_i \in \{0,1\} D={(xi,yi)}i=1m,yi{0,1}
# 1.数据处理,特征工程
data_path = 'watermelon3_0_Ch.csv'
data = pd.read_csv(data_path).values
# 按照数据集3.0α,强制转换数据类型
X = data[:,7:9].astype(float)
y = data[:,9]
y[y=='是'] = 1
y[y=='否'] = 0
y = y.astype(int)
  1. 计算西瓜书60页中的 X i 、 μ i 、 Σ i X_{i}、\mu_i、\Sigma_i XiμiΣi
# 将X的数据根据label值分成X0和X1
pos = y == 1
neg = y == 0
X0 = X[neg]
X1 = X[pos]# 计算u0,u1 keepdims保持原数据维数
u0 = X0.mean(0, keepdims=True)
u1 = X1.mean(0, keepdims=True)# 计算sigma0,sigma1
sigma0 = np.dot((X0-u0).T,X0-u0)
sigma1 = np.dot((X1-u1).T,X1-u1)
  1. 根据式3.33计算类内散度矩阵
    S w = Σ 0 + Σ 1 = ∑ x ∈ X 0 ( x − μ 0 ) ( x − μ 0 ) T + ∑ x ∈ X 1 ( x − μ 1 ) ( x − μ 1 ) T S_w=\Sigma_0+\Sigma_1=\sum_{x\in X_{0}}(x-\mu_0)(x-\mu_0)^T+\sum_{x\in X_{1}}(x-\mu_1)(x-\mu_1)^T Sw=Σ0+Σ1=xX0(xμ0)(xμ0)T+xX1(xμ1)(xμ1)T
    根据式3.39计算 w w w
    w = S w − 1 ( μ 0 − μ 1 ) w=S_w^{-1}(\mu_0-\mu_1) w=Sw1(μ0μ1)
# 计算类内散度矩阵 with-class scatter matrix
sw = sigma0 + sigma1# numpy.linalg.inv() 函数来计算矩阵的逆
w = np.dot(np.linalg.inv(sw),(u0-u1).T).reshape(1,-1)
  1. 画出样本点和得到的直线
fig, ax = plt.subplots()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['left'].set_position(('data', 0))
ax.spines['bottom'].set_position(('data', 0))plt.scatter(X1[:, 0], X1[:, 1], c='k', marker='o', label='good')
plt.scatter(X0[:, 0], X0[:, 1], c='r', marker='x', label='bad')plt.xlabel('密度', labelpad=1)
plt.ylabel('含糖量')
plt.legend(loc='upper right')x_tmp = np.linspace(-0.05, 0.15)
y_tmp = x_tmp * w[0, 1] / w[0, 0]
plt.plot(x_tmp, y_tmp, '#808080', linewidth=1)

得到下图
在这里插入图片描述

  1. 计算每个样本点在直线上的投影
    计算的理解参考这篇文章
# 求w这个向量的 单位向量 wu
# np.linalg.norm()默认求2 范数,表示向量中各个元素平方和 的 1/2 次方,L2 范数又称 Euclidean 范数或者 Frobenius 范数。
wu = w / np.linalg.norm(w)# 正负样本点
# 求负样本的投影点,并连线
X0_project = np.dot(X0, np.dot(wu.T, wu))
plt.scatter(X0_project[:, 0], X0_project[:, 1], c='r', s=15)
for i in range(X0.shape[0]):plt.plot([X0[i, 0], X0_project[i, 0]], [X0[i, 1], X0_project[i, 1]], '--r', linewidth=1)# 求正样本的投影点,并连线
X1_project = np.dot(X1, np.dot(wu.T, wu))
plt.scatter(X1_project[:, 0], X1_project[:, 1], c='k', s=15)
for i in range(X1.shape[0]):plt.plot([X1[i, 0], X1_project[i, 0]], [X1[i, 1], X1_project[i, 1]], '--k', linewidth=1)

得到下图
在这里插入图片描述

将上述代码封装成类,如下:

class LDA(object):def fit(self, X_, y_, plot_=False):pos = y_ == 1neg = y_ == 0X0 = X_[neg]X1 = X_[pos]u0 = X0.mean(0, keepdims=True)  # (1, n)u1 = X1.mean(0, keepdims=True)sw = np.dot((X0 - u0).T, X0 - u0) + np.dot((X1 - u1).T, X1 - u1)w = np.dot(np.linalg.inv(sw), (u0 - u1).T).reshape(1, -1)  # (1, n)if plot_:# 设置字体为楷体plt.rcParams['axes.unicode_minus']=False #用来正常显示负号plt.rcParams['font.sans-serif'] = ['KaiTi']fig, ax = plt.subplots()ax.spines['right'].set_color('none')ax.spines['top'].set_color('none')ax.spines['left'].set_position(('data', 0))ax.spines['bottom'].set_position(('data', 0))plt.scatter(X1[:, 0], X1[:, 1], c='k', marker='o', label='good')plt.scatter(X0[:, 0], X0[:, 1], c='r', marker='x', label='bad')plt.xlabel('密度', labelpad=1)plt.ylabel('含糖量')plt.legend(loc='upper right')x_tmp = np.linspace(-0.05, 0.15)y_tmp = x_tmp * w[0, 1] / w[0, 0]plt.plot(x_tmp, y_tmp, '#808080', linewidth=1)wu = w / np.linalg.norm(w)# 正负样板店X0_project = np.dot(X0, np.dot(wu.T, wu))plt.scatter(X0_project[:, 0], X0_project[:, 1], c='r', s=15)for i in range(X0.shape[0]):plt.plot([X0[i, 0], X0_project[i, 0]], [X0[i, 1], X0_project[i, 1]], '--r', linewidth=1)X1_project = np.dot(X1, np.dot(wu.T, wu))plt.scatter(X1_project[:, 0], X1_project[:, 1], c='k', s=15)for i in range(X1.shape[0]):plt.plot([X1[i, 0], X1_project[i, 0]], [X1[i, 1], X1_project[i, 1]], '--k', linewidth=1)# 中心点的投影u0_project = np.dot(u0, np.dot(wu.T, wu))plt.scatter(u0_project[:, 0], u0_project[:, 1], c='#FF4500', s=60)u1_project = np.dot(u1, np.dot(wu.T, wu))plt.scatter(u1_project[:, 0], u1_project[:, 1], c='#696969', s=60)ax.annotate(r'u0 投影点',xy=(u0_project[:, 0], u0_project[:, 1]),xytext=(u0_project[:, 0] - 0.2, u0_project[:, 1] - 0.1),size=13,va="center", ha="left",arrowprops=dict(arrowstyle="->",color="k",))ax.annotate(r'u1 投影点',xy=(u1_project[:, 0], u1_project[:, 1]),xytext=(u1_project[:, 0] - 0.1, u1_project[:, 1] + 0.1),size=13,va="center", ha="left",arrowprops=dict(arrowstyle="->",color="k",))plt.axis("equal")  # 两坐标轴的单位刻度长度保存一致plt.show()self.w = wself.u0 = u0self.u1 = u1return selfdef predict(self, X):project = np.dot(X, self.w.T)wu0 = np.dot(self.w, self.u0.T)wu1 = np.dot(self.w, self.u1.T)return (np.abs(project - wu1) < np.abs(project - wu0)).astype(int)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/75591.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小程序商品如何设置限购

限购是一种常用的小程序商品销售策略&#xff0c;可以帮助商家提高销售额、控制库存和增加用户的购买欲望。那么&#xff0c;小程序产品怎么设置限购呢&#xff1f;下面将为您详细介绍。 1. 设置限购数量 可以设置最低购买数量来鼓励用户批量购买或满足特定的销售需求。例如&…

FFmpeg常见命令行(一):FFmpeg工具使用基础

前言 在Android音视频开发中&#xff0c;网上知识点过于零碎&#xff0c;自学起来难度非常大&#xff0c;不过音视频大牛Jhuster提出了《Android 音视频从入门到提高 - 任务列表》。本文是Android音视频任务列表的其中一个&#xff0c; 对应的要学习的内容是&#xff1a;FFmpe…

沙箱逃逸复现

当this指向window 原理 1.this直接指向window&#xff0c;拿到window的tostring的constructor来利用构造函数拿到process 是对象且指向沙箱外部&#xff0c;才可以利用 const vm require(vm); const script const process this.toString.constructor(return process)() pr…

OpenCL编程指南-9.1命令、队列、事件

概述 命令队列是OpenCL的核心。平台定义了一个上下文&#xff0c;其中包含一个或多个计算设备。每个计算设备可以有一个或多个命令队列。提交到这些队列的命令将完成OpenCL程序的具体工作。 在一个简单的OpenCL程序中&#xff0c;提交到一个命令队列的命令会按顺序执行。一个…

面试热题100(二叉树的右视图)

给定一个二叉树的 根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 树这类问题用的最多的就是递归&#xff0c;因为树具有天然的递归结构&#xff1a; 我们来分析一下题目&#xff0c;给定一棵树根结…

vue拖拽改变宽度

1.封装组件ResizeBox.vue <template><div ref"resize" class"resize"><div ref"resizeHandle" class"handle-resize" /><slot /></div> </template> <script> export default {name: Resi…

Python入门自学进阶-Web框架——38、redis、rabbitmq、git

缓存数据库redis&#xff1a; NoSQL&#xff08;Not only SQL&#xff09;泛指非关系型的数据库。为了解决大规模数据集合多重数据类的挑战。 NoSQL数据库的四大分类&#xff1a; 键值&#xff08;Key-Value&#xff09;存储数据库列存储数据库文档型数据库图形&#xff08;…

Spring学习笔记之spring概述

文章目录 Spring介绍Spring8大模块Spring特点 Spring介绍 Spring是一个轻量级的控制反转和面向切面的容器框架 Spring最初的出现是为了解决EJB臃肿的设计&#xff0c;以及难以测试等问题。 Spring为了简化开发而生&#xff0c;让程序员只需关注核心业务的实现&#xff0c;尽…

【暑期每日一练】 day14

目录 选择题 &#xff08;1&#xff09; 解析&#xff1a; &#xff08;2&#xff09; 解析&#xff1a; &#xff08;3&#xff09; 解析&#xff1a; &#xff08;4&#xff09; 解析&#xff1a; &#xff08;5&#xff09; 解析&#xff1a; 编程题 题一 …

品牌活动 | 阿里云云原生技术实践营:大模型+CloudOS,实现企业智能化

近日&#xff0c;由阿里云举办的“云原生技术实践营-应用和容器实践专场”在广州顺利开展。行云创新CEO马洪喜作为受邀嘉宾之一&#xff0c;参加了本次活动&#xff0c;分享了主题为“API大语言模型&#xff0c;以非侵入式实现企业业务智能化变革”的演讲&#xff0c;向参会者展…

Java正则校验密码至少包含:字母数字特殊符号中的2种

一、语法 字符说明\将下一字符标记为特殊字符、文本、反向引用或八进制转义符。例如&#xff0c; n匹配字符 n。\n 匹配换行符。序列 \\\\ 匹配 \\ &#xff0c;\\( 匹配 (。^匹配输入字符串开始的位置。如果设置了 RegExp 对象的 Multiline 属性&#xff0c;^ 还会与"\n…

【计算机网络】网络层协议 -- ICMP协议

文章目录 1. ICMP协议简介2. ICMP协议格式3. ping命令4. ping命令与端口号没有关系&#xff01;&#xff01;&#xff01;5. traceroute命令 1. ICMP协议简介 ICMP&#xff08;Internet Control Message Protocol&#xff0c;控制报文协议&#xff09;&#xff0c;用于在IP主机…

web前端转正工作总结范文5篇

web前端转正工作总结&#xff08;篇1&#xff09; 来到__有限公司已经三个月了&#xff0c;目前的工作是前端开发&#xff0c;我是一名应届毕业生&#xff0c;之前没有过工作经验&#xff0c;在刚来到__这个大家庭的时候&#xff0c;我就被这里的工作气氛深深地吸引&#xff0…

C# Onnx Paddle模型 OCR识别

RapidOCR https://github.com/RapidAI/RapidOCR/blob/main/docs/README_zh.md 效果 项目 Demo&#xff08;带模型&#xff09;下载

【积水成渊】CSS磨砂玻璃效果和渐变主题色文字

大家好&#xff0c;我是csdn的博主&#xff1a;lqj_本人 lqj_本人_python人工智能视觉&#xff08;opencv&#xff09;从入门到实战,前端,微信小程序-CSDN博客 最新的uniapp毕业设计专栏也放在下方了&#xff1a; https://blog.csdn.net/lbcyllqj/category_12346639.html?spm1…

考研408 | 【计算机网络】概述

计算机网络体系结构 计算机网络概述&#xff1a;1.概念&#xff0c;组成&#xff0c;功能&#xff0c;分类2.标准化工作及相关组织3.性能指标体系结构&参考模型&#xff1a;1.分层结构2.协议&#xff0c;接口&#xff0c;服务3.ISO/OSI模型4.TCP/IP模型 目录 计算机网络体…

AI深度学习部署全记录

AI部署流程&#xff0c;以PyTorch为例&#xff1a; 1.Torch.Model->ONNX->ONNXSIM->TensortRT->落地 2.Torch.Model->Pt->ONNX->ONNXRunTime->落地 3.Torch.Model->Pt->Libtorch->落地 4.Torch.Model->PNNX->TensorRT->落地 5.…

图解系列 DNS查找过程和DNS缓存

DNS 充当地址簿。它将人类可读的域名 (google.com) 转换为机器可读的 IP 地址 (142.251.46.238)。 开局一张图 来自&#xff1a;https://xiaolishen.medium.com/the-dns-lookup-journey-240e9a5d345c 寻址流程 查询浏览器缓存&#xff1a;当你输入一个域名后&#xff0c;浏览…

BPMNJS插件使用及汉化(Activiti绘制流程图插件)

BPMNJS插件运行最重要的就是需要安装nodejs插件,这不一定要安装和测试好。 主要是使用npm命令 1、配置BPMNJS插件绘制activiti7工作流 1.1、安装和配置nodejs 插件 1.1.1、下载nodejs 下载地址:https://nodejs.org/en 1.1.2、安装nodejs,傻瓜式安装 安装之后在安装…

一文详解 requests 库中 json 参数和 data 参数的用法

在requests库当中&#xff0c;requests请求方法&#xff0c;当发送post/put/delete等带有请求体的请求时&#xff0c;有json和data2个参数可选。 众所周知&#xff0c;http请求的请求体格式主要有以下4种&#xff1a; application/json applicaiton/x-www-from-urlencoded …