数字图像处理(番外)图像增强

图像增强

图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。

图像对比度

图像对比度计算方式如下:
C = ∑ δ δ ( i , j ) P δ ( i , j ) C=\displaystyle\sum_{{\delta}}\delta(i,j)P_\delta(i,j) C=δδ(i,j)Pδ(i,j)
其中, δ ( i , j ) = ∣ i − j ∣ \delta(i,j)=\lvert i-j\rvert δ(i,j)=ij,即相邻像素间的灰度差; P δ ( i , j ) P_\delta(i,j) Pδ(i,j)为相邻像素灰度差为 δ \delta δ的像素分布概率。可以是四邻域,也可以是八邻域。具体过程如下:
原始图像为:
L = [ 1 3 5 2 1 3 3 6 0 ] L=\begin{bmatrix} 1 & 3 &5\\ 2 & 1 &3 \\ 3 & 6&0 \end{bmatrix} L= 123316530
按照四邻域进行计算,对比度 C L = [ ( 1 2 + 2 2 ) + ( 2 2 + 2 2 + 2 2 ) + ( 1 2 + 1 2 + 1 2 ) + ( 2 2 + 2 2 + 1 2 + 5 2 ) + ( 2 2 + 2 2 + 3 2 ) + ( 1 2 + 3 2 ) + ( 5 2 + 3 2 + 6 2 ) + ( 3 2 + 6 2 ) / 22 C_L=\lbrack(1^2+2^2)+(2^2+2^2+2^2)+(1^2+1^2+1^2)+(2^2+2^2+1^2+5^2)+(2^2+2^2+3^2)+(1^2+3^2)+(5^2+3^2+6^2)+(3^2+6^2)/22 CL=[(12+22)+(22+22+22)+(12+12+12)+(22+22+12+52)+(22+22+32)+(12+32)+(52+32+62)+(32+62)/22。22就是平方的个数。

1.对比度展宽

对比度展宽的目的是通过增强图像的亮暗对比程度而改善画质,使图像的显示效果更加清晰。

线性对比度展宽

通过抑制非重要信息的对比度来腾出空间给重要信息进行对比度的展宽。
在这里插入图片描述
原图的灰度为 f ( i , j ) f(i,j) f(i,j),处理后的图像灰度为 g ( i , j ) g(i,j) g(i,j)。原图中的重要景物的灰度分布假设分布在 [ f a , f b ] \lbrack f_a,f_b\rbrack [fa,fb]的范围内,则对比度线性展宽的目的是使处理后图像的重要景物的灰度分布在 [ g a , g b ] \lbrack g_a,g_b\rbrack [ga,gb]的范围内,当 Δ f = ( f b − f a ) < Δ g = ( g b − g a ) \varDelta f=(f_b-f_a)<\varDelta g=(g_b-g_a) Δf=(fbfa)<Δg=(gbga),则可达到对比度展宽的目的。
计算方式如下:
g ( i , j ) = { α f ( i , j ) 0 ≤ f ( i , j ) < a β ( f ( i , j ) − a ) + g a a ≤ f ( i , j ) < b γ ( f ( i , j ) − b ) + g b b ≤ f ( i , j ) < 255 g(i,j)= \begin{cases} \alpha f(i,j) &\text{ } 0\le f(i,j)<a \\ \beta (f(i,j)-a)+g_a &\text{ } a\le f(i,j)<b \\ \gamma (f(i,j)-b)+g_b &b\le f(i,j)<255 \end{cases} g(i,j)= αf(i,j)β(f(i,j)a)+gaγ(f(i,j)b)+gb 0f(i,j)<a af(i,j)<bbf(i,j)<255
其中, α = g a f a , β = g b − g a f b − f a , γ = 255 − g b 255 − f b \alpha =\frac{g_a}{f_a},\beta =\frac{g_b-g_a}{f_b-f_a},\gamma =\frac{255-g_b}{255-f_b} α=faga,β=fbfagbga,γ=255fb255gb
C++代码如下:

    cv::Mat image = cv::imread("Lena.bmp");cv::Mat grayImage(image.size(), CV_8UC1);cv::Mat dstImage(grayImage.size(), CV_8UC1);cv::cvtColor(image, grayImage, CV_BGR2GRAY);int fa = 50, fb = 100;float ga = 30, gb = 120;for (int row = 0; row < grayImage.rows; row++){uchar *currentData = grayImage.ptr<uchar>(row);for (int col = 0; col < grayImage.cols; col++){if (*(currentData + col) >= 0 && *(currentData + col) < fa){dstImage.at<uchar>(row, col) = uchar(ga / fa * (*(currentData + col)));}if (*(currentData + col) >= fa && *(currentData + col) < fb){dstImage.at<uchar>(row, col) = uchar((gb-ga) / (fb-fa) * (*(currentData + col)-fa)+ga);}if (*(currentData + col) >= fb && *(currentData + col) < 255){dstImage.at<uchar>(row, col) = uchar((255-gb) / (255-fb) * (*(currentData + col)-fb)+gb);}}//currentData++;}

结果如下:
在这里插入图片描述

非线性对比度展宽

通过一个光滑的映射曲线,使得处理后图像的灰度变化比较光滑。计算公式如下:
g ( i , j ) = c ⋅ l g ( 1 + f ( i , j ) ) g(i,j)=c\cdot lg(1+f(i,j)) g(i,j)=clg(1+f(i,j))
实际上完成的作用是,抑制高亮度区域,扩展低亮度区域。

2.直方图均衡化

在信息论中有这样一个结论:当数据的分布接近均匀分布的时候,数据所承载的信息量(熵)为最大。
灰度直方图的基本原理是:对在图像中像素个数多的灰度级(即对画面起主要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。
直方图均衡化方法的具体步骤如下:

  1. 求出原图 f ( i , j ) M × N f(i,j)_{M\times N} f(i,j)M×N的灰度直方图,设用256维的向量 h f h_f hf表示;
  2. h f h_f hf求原图的灰度分布概率,记作 p f p_f pf,则有 p f ( i ) = 1 N f ⋅ h f ( i ) , i = 0 , 1 , … , 255 p_f(i)=\frac{1}{N_f}\cdot h_f(i),i=0,1,\dots ,255 pf(i)=Nf1hf(i),i=0,1,,255
    其中, N f = M × N N_f=M\times N Nf=M×N M , N M,N M,N分别为图像的长和宽)为图像的总像素个数;
  3. 计算图像各个灰度值的累计分布概率,记作 p a p_a pa,则有 p a ( i ) = ∑ k = 0 i p f ( k ) , i = 1 , 2 , … , 255 p_a(i)=\displaystyle\sum_{k=0}^ip_f(k),i=1,2,\dots ,255 pa(i)=k=0ipf(k),i=1,2,,255
    其中,令 p a ( 0 ) = 0 p_a(0)=0 pa(0)=0
  4. 进行直方图均衡化计算,得到处理后图像的像素值 g ( i , j ) g(i,j) g(i,j)为: g ( i , j ) = 255 ⋅ p a ( k ) g(i,j)=255\cdot p_a(k) g(i,j)=255pa(k)

C++代码如下所示:

    cv::Mat image = cv::imread("Lena.bmp");cv::Mat src(image.size(), CV_8UC1);//转为灰度图像cv::cvtColor(image, src, CV_BGR2GRAY);cv::Mat dst(image.size(), CV_8UC1);float hf[256] = { 0 };for (int row = 0; row < src.rows; row++){uchar *currentData = src.ptr<uchar>(row);for (int col = 0; col < src.cols; col++){hf[*(currentData + col)] += 1;}}float pf[256] = { 0 };for (int i = 0; i < 256; i++){pf[i] = hf[i] / (src.rows*src.cols);}float pa[256] = { 0 };for (int i = 1; i < 256; i++){float sumNumber = 0;for (int j = 0; j < i+1; j++){sumNumber += pf[j];}pa[i] = sumNumber;}for (int row = 0; row < dst.rows; row++){uchar * currentData = dst.ptr<uchar>(row);for (int col = 0; col < dst.cols; col++){*(currentData + col) = uchar(255 * pa[src.at<uchar>(row, col)]);}}

结果展示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/75725.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【方法】PDF可以转换成Word文档吗?如何操作?

很多人喜欢在工作中使用PDF&#xff0c;因为PDF格式可以准确地保留文档的原始格式&#xff0c;比如字体、图像、布局和颜色等。 但如果编辑文档的话&#xff0c;PDF还是没有Word文档方便。那可以将PDF转换成Word格式&#xff0c;再来编辑吗&#xff1f;如何操作呢&#xff1f;…

Vue2 第二十节 vue-router (一)

1.相关概念理解 2.基本路由 3.嵌套路由&#xff08;多级路由&#xff09; 一.相关概念理解 1.1 vue-router的理解 路由&#xff1a;就是一组key-value的对应关系, key为路径&#xff0c;value可能是function或者component多个路由&#xff0c;需要经过路由器的管理编程中的…

从0到1开发go-tcp框架【2-实现Message模块、解决TCP粘包问题、实现多路由机制】

从0到1开发go-tcp框架【2-实现Message模块、解决TCP粘包问题、实现多路由机制】 1 实现\封装Message模块 zinx/ziface/imessage.go package zifacetype IMessage interface {GetMsdId() uint32GetMsgLen() uint32GetMsgData() []byteSetMsgId(uint32)SetData([]byte)SetData…

docker容器互联详解

目录 docker容器互联详解 一、容器互联概述&#xff1a; 二、案例实验&#xff1a; 1、用户自定义的网络&#xff1a; 2、查看当前的IP信息&#xff1a; 3、启动第三个容器&#xff1a; 4、查看三个容器内部的网络&#xff1a; 5、Ping测试&#xff1a; Ps备注&#x…

wpf画刷学习1

在这2篇博文有提到wpf画刷&#xff0c; https://blog.csdn.net/bcbobo21cn/article/details/109699703 https://blog.csdn.net/bcbobo21cn/article/details/107133703 下面单独学习一下画刷&#xff1b; wpf有五种画刷&#xff0c;也可以自定义画刷&#xff0c;画刷的基类都…

web服务

静态网页与动态网页的区别 在网站设计中&#xff0c;静态网页是网站建设的基础&#xff0c;纯粹 HTML 格式的网页通常被称为“静态网页”&#xff0c;静态网页是标准的 HTML 文件&#xff0c;它的文件扩展名是 .htm、.html&#xff0c;可以包含文本、图像、声音、FLASH 动画、…

使用ffplay播放scrcpy server 视频流

使用ffplay播放scrcpy server 视频流 以windows平台为例 1 下载scrcpy windows平台安装包并解压 下载连接 2 确认版本 .\scrcpy.exe -v3 push server到Android设备 adb push scrcpy-server /data/local/tmp/scrcpy-server-manual.jar4 forward 端口 adb forward tcp:12…

局域网部署,用WorkPlus视频会议保密又安全

用户采用私有化部署视频会议软件的情况主要有以下几种因素&#xff1a; 1. 针对机密性高的会议&#xff1a;如果有涉及高度机密的商业谈判或敏感信息交流等重要会议&#xff0c;政府、军工、企业等用户会选择局域网内部署视频会议软件&#xff0c;以保证信息安全。 2. 频繁进…

iPhone 7透明屏的显示效果怎么样?

iPhone 7是苹果公司于2016年推出的一款智能手机&#xff0c;它采用了4.7英寸的Retina HD显示屏&#xff0c;分辨率为1334x750像素。 虽然iPhone 7的屏幕并不是透明的&#xff0c;但是苹果公司在设计上采用了一些技术&#xff0c;使得用户在使用iPhone 7时可以有一种透明的感觉…

自然语言处理学习笔记(一)————概论

目录 1.自然语言处理概念 2.自然语言与编程语言的比较 &#xff08;1&#xff09;词汇量&#xff1a; &#xff08;2&#xff09;结构化&#xff1a; &#xff08;3&#xff09;歧义性&#xff1a; &#xff08;4&#xff09;容错性&#xff1a; &#xff08;5&#xff0…

Docker 安装 MySQL5.6

方法一、docker pull mysql 查找Docker Hub上的mysql镜像 #docker search mysql 这里我们拉取官方的镜像,标签为5.6 #docker pull mysql:5.6 &#xff08;第一次启动Docker-MySql主要是查看Docker里面MySQL的默认配置&#xff0c;数据位置&#xff0c;日志位置&#xff0c;配…

【C++】开源:Linux端V4L2视频设备库

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍Linux端V4L2视频设备库。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c;下…

解决一个Yarn异常:Alerts for Timeline service 2.0 Reader

【背景】 环境是用Ambari搭建的大数据环境&#xff0c;版本是2.7.3&#xff0c;Hdp是3.1.0&#xff1b;我们用这一套组件搭建了好几个环境&#xff0c;都有这个异常告警&#xff0c;但hive、spark都运行正常&#xff0c;可以正常使用&#xff0c;所以也一直没有去费时间解决这…

斯坦福大学提出在类别层级对多零件多关节三维拼装新方法

来源&#xff1a;投稿 作者&#xff1a;橡皮 编辑&#xff1a;学姐 paper&#xff1a;https://arxiv.org/pdf/2303.06163.pdf 背景&#xff1a; 形状装配通过排列一组简单或基本的零件几何图形来组成复杂的形状几何图形。许多重要的任务和应用都依赖于形状装配算法。 计算机…

棱镜七彩正式加入龙蜥社区安全联盟(OASA)

近日&#xff0c;龙蜥社区安全联盟&#xff08;OASA&#xff09;正式成立&#xff0c;棱镜七彩成为该联盟成员单位。 龙蜥社区安全联盟是促进产业合作的非营利组织&#xff0c;致力于打造中立开放、聚焦操作系统信息安全的交流平台&#xff0c;推进龙蜥社区乃至整个产业安全生态…

js实现原型链污染,沙箱绕过

一、沙箱绕过 1.概念 沙箱绕过"是指攻击者利用各种方法和技术来规避或绕过应用程序或系统中的沙箱&#xff08;sandbox&#xff09;。沙箱是一种安全机制&#xff0c;用于隔离和限制应用程序的执行环境&#xff0c;从而防止恶意代码对系统造成损害。它常被用于隔离不受信…

2023 电赛E题--可能会出现的问题以及解决方法

2023年电赛E题报告模板&#xff08;K210版&#xff09;--可直接使用 本文链接&#xff1a;2023年电赛E题报告模板&#xff08;K210版&#xff09;--可直接使用_皓悦编程记的博客-CSDN博客 解决激光笔在黑色区域无法识别 本文链接&#xff1a; 2023 电赛 E 题 激光笔识别有误-…

Stable Diffusion AI绘画学习指南【插件安装设置】

插件安装的方式 可用列表方式安装&#xff0c;点开Extensions 选项卡&#xff0c;找到如下图&#xff0c;找到Available选项卡&#xff0c;点load from加载可用插件&#xff0c;在可用插件列表中找到要装的插件按install 按扭按装&#xff0c;安装完后(Apply and restart UI)应…

ER系列路由器多网段划分设置指南

ER系列路由器多网段划分设置指南 - TP-LINK 服务支持 TP-LINK ER系列路由器支持划分多网段&#xff0c;可以针对不同的LAN接口划分网段&#xff0c;即每一个或多个LAN接口对应一个网段&#xff1b;也可以通过一个LAN接口与支持划分802.1Q VLAN的交换机进行对接&#xff0c;实现…

【八】mybatis 日志模块设计

mybatis 日志模块设计 简介&#xff1a;闲来无事阅读一下mybatis的日志模块设计&#xff0c;学习一下优秀开源框架的设计思路&#xff0c;提升自己的编码能力 模块设计 在Mybatis内部定义了4个级别&#xff1a;Error:错误 、warn:警告、debug:调试、trance&#xff0c;日志优…