汽车智能化再掀新热潮!「中央计算架构」进入规模量产周期

中央计算+区域控制的新一代整车电子架构,已经成为车企继电动化、智能化(功能上车)之后,新一轮竞争的焦点。

如果说智能化的1.0阶段,是智能驾驶+智能座舱的争夺战;那么,即将进入的2.0阶段,将是准入门槛更高的全域电子架构争夺战。

在中央计算+区域架构下,算力逐渐向中央集中,第一阶段时由多个同一域内的ECU合并成一个域控制器,第二阶段则是多个域控制器继续融合,最终形成1个中央计算平台+N个区域控制架构。

图片

图片

而在中央计算平台部分,也正在经历从多芯片物理集成(单板或多板)到单一超大算力芯片的阶段。比如,英伟达、高通、黑芝麻智能都已经推出了各自的解决方案。

比如,黑芝麻智能推出的首个智能汽车跨域计算芯片平台武当系列,可以实现高性价比的单芯片跨域计算,通过异构隔离技术,把不同算力根据不同场景,以及不同规格和安全要求,进行搭配组合。

今年6月,武当系列的首款C1200芯片获得了业内首个ISO 26262 ASIL-D Ready功能安全产品认证证书,可用于 CMS(电子后视镜)系统、行泊一体、整车计算、信息娱乐、智能大灯、舱内感知系统等跨域计算场景。

整体上来看,目前整车电子架构分为两种:一种是中央计算/控制+智驾/座舱域控制器模式,属于过渡阶段;一种是中央计算(多板或单板,单/多芯片)+区域控制模式。

在计算平台方面,过渡阶段的主流选择是:NXP+英伟达+高通。其中,NXP的S32系列是市场主要选择项;该公司此前对外表示,下游车企客户对于S32的需求持续增长,远远超出预期。

目前,特斯拉是业内首家完成「中央计算+区域架构」落地的车企,去年开始,包括小鹏汽车、理想汽车等新势力也在陆续进入交付周期,同时呈现出多种形态逐步迭代演进的趋势。

其中,在供应链部分,过去主要以外资为主的电子架构赛道,也在逐步转变为车企(尤其是新势力和新能源品牌)领头+本地化供应商配合的模式。

比如,小鹏汽车推出的X-EEA 3.0架构,就是采用了中央计算+区域架构(左右车身域),目前已经在小鹏G9上量产应用。其中,中央计算部分,采用了座舱与网关通讯集成模式,智驾域控制器则是依旧独立。

理想汽车则是在L系列先部署了基于NXP S32平台的中央控制域控制器,包含动力、车身、部分底盘的功能,主要融合了车身控制器和中央网关。

同时,下一代的中央计算平台+区域控制器架构正在研发,大概率会在纯电平台进行发布搭载,进一步融合智能座舱、自动驾驶和车辆控制。

埃安、智己、零跑等车企也陆续披露进展。

广汽埃安,是在去年底正式发布了新一代电子电气架构-星灵架构,旗下高端品牌昊铂首款车型就首发搭载。其中,中央计算单元(中央车控)采用恩智浦的S32G3处理器(大陆集团Tier1),并配合四个区域控制器。

数据显示,相比广汽上一代电子电气架构,星灵架构的算力提升了50倍,数据传输速率提升10倍,线束回路减少约40%,控制器减少约20个。

按照业内人士的评价,“目前大部分车企的这一代架构还不是真正意义上的整车集中,下一代会向整车集中化架构演进,中央计算的程度会更高。”

7月31日,零束科技首款跨域融合中央大脑ZXD1首样顺利交付智己汽车,也标志着零束首款中央大脑正式进入量产研发关键阶段。

“多域、多模块融合可以大大减少整车独立域控制器,降低整车开发成本,”按照公开信息显示,这套系统搭载并部署了零束自研智能车OS,基于面向服务的SOA软件架构,实现应用软件的快速部署和适配迭代。

目前,这套硬件由延锋伟世通旗下的江苏天宝负责生产,其也是零束座舱域控制器的供应商,同时也是上汽集团主要的座舱娱乐主机供应商。

而在昨天,零跑汽车也在业内首次发布第三代中央集成式电子电气架构(LEAP3.0),支持中央集成超算和平台灵活共享。相比于其他企业,这套方案的特点是提供不同性价比的多选项。

图片

其中,“标准解决方案”为高通8155+NXP S32G中配(集成泊车,智驾独立)、中配方案为高通8295+NXP S32G高配(集成L2/L2+智驾)、“高配解决方案”为高通8295+NXP S32G高配+英伟达OrinX(集成L2、高阶智驾独立)。

按照官方给出的数据,这套架构在控制器、线束方面也进行了大幅优化,同时拓宽数据带宽、以及电源管理模式,让系统间的交互做到更高效。

目前,这套最新一代电子电气架构将应用于零跑下一款新车型上,内部代号为B11,将于今年慕尼黑车展发布。

此外,零跑汽车也将继续以供应商身份(华锐捷,零跑与大华的合资公司)为其它品牌提供技术服务,包含从零部件、软件到整车的四种合作方式。

另一家新能源头部品牌—比亚迪,也在规模化布局多域计算+区域控制架构基础上,也即将在易四方技术平台(仰望车型)首发搭载中央计算平台+域控控制架构高度协同的电子电气架构。

在高工智能汽车研究院看来,考虑到座舱、智驾上层软件的品牌差异化需求,底层整车电子架构(相对于消费者来说,是黑盒)的技术授权,或许会成为下一周期的行业主流趋势。

而中央计算+区域架构给传统供应链带来的冲击在于,过去为整车提供不同ECU的供应商,将开始进入新一轮洗牌周期。比如,传统车身、网关供应商,将逐步被座舱域控制器、中央域控制器供应商替代。

比如,以上汽为例,零束的这套方案如果在集团内多个品牌全面覆盖,这意味着,原有的包括联合汽车电子、南京天擎、华东汽电等车身、网关供应商将被「扫地出门」。

而在小鹏汽车,G9等新车型的上市,之前的中央网关(供应商:经纬恒润)被集成至中央域控制器,经纬恒润也被伟创力、航盛等供应商替代。

作为传统多品类车身电子ECU的供应商(分布式架构下开发和量产几乎所有的车身模块),经纬恒润作为一家典型代表,未来面临的就是旗下产品线被新一代电子架构逐步替代的危机。

这也是为什么在2022年经纬恒润成立座舱事业部,从而完成智能驾驶+智能座舱+车身域控的全布局,从而增强企业的核心竞争力。

类似的布局,还有德赛西威。该公司在几年前推动内部业务架构重组,其中,智能座舱业务整合了原车载信息娱乐系统、车身信息与控制系统和驾驶信息显示系统三类产品。

此前,德赛西威在车身域(车身电子)赛道的实力相对偏弱;2020年财务数据显示,车身电子仅占该公司整体营收的4.87%。2022年,智能车身域控平台首个项目才进入量产阶段,同时进入平台2.0阶段研发。

该公司表示,通过对车身控制多个模块的开发、测试能力搭建和研发持续性投入,有助于提升公司在车身域产品线的竞争力,保持在智能座舱市场的领先地位。

此外,围绕中央计算+区域架构,高性能MCU也称为新的市场焦点。除了瑞萨、NXP两家,包括芯驰科技在内的芯片厂商也在入局。

比如,芯驰科技的G9系列中,最新旗舰产品G9H,是面向下一代高性能中央网关、车载计算单元、跨域控制器等应用场景。

与单核的G9X和四核的G9Q/G9V相比,G9H采用6核Cortex-A55,不仅内核数目增多,主频也从1.4GHz提升至1.8GHz,整体A核性能翻倍。

在提升A核性能的同时,G9H也配置了更多的R核,从G9X、G9Q/G9V 的1对双核锁步Cortex-R5F CPU增加到3对双核锁步Cortex-R5F,可以同时运行3个AutoSAR系统。

此外,G9H可以支持芯驰自主研发的SDPE包处理引擎,可方便实现CAN FD、LIN和Ethernet之间的消息、包、信号的转发。同时,G9H内置满足国密标准的高性能HSM。

同时,在今年的上海车展期间,芯驰科技还正式对外发布了第二代中央计算架构SCCA2.0,由一个中央计算单元、四个区域控制器以及底盘和动力集成控制器组成,从而帮助车厂更快向中央计算架构演进。

高工智能汽车研究院监测数据显示,目前国内大部分头部车企、Tier1都在预研或即将落地中央计算+区域控制平台解决方案,并带动供应链进入提质升级的新周期。

而对于传统汽车电子(尤其是各种单一功能ECU)厂商来说,2.0周期也是残酷无情的洗牌整合阶段,很多产品都会彻底退出市场。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/75831.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

postman----传参格式(json格式、表单格式)

本文主要讲解postman使用post请求方法的2中传参方式:json格式、表单格式 首先了解下,postman进行接口测试,必须条件是: ♥请求地址 ♥请求协议 ♥请求方式 ♥请求头 ♥参数 json格式 先看一下接口文档,根据接口文档&…

测试人员简单使用Jenkins

一、测试人员使用jenkins干什么? 部署测试环境 二、相关配置说明 一般由开发人员进行具体配置 1.Repository URL:填写git地址 2.填写开发分支,测试人员可通过相应分支进行测试环境的构建部署 当多个版本并行时,开发人员可以通过…

【Liux下6818开发板(ARM)】触摸屏

(꒪ꇴ꒪ ),hello我是祐言博客主页:C语言基础,Linux基础,软件配置领域博主🌍快上🚘,一起学习!送给读者的一句鸡汤🤔:集中起来的意志可以击穿顽石!作者水平很有限,如果发现错误&#x…

Unity数字可视化学校_昼夜(二)

1、时间设置: 2、新建夜晚 3、新建侧置球(BOX),测试灯光强度 降低亮度 色调:冷色调 4、自发光 新建shader 灯光控制 道路线: 建筑: 夜晚加灯光: 玻璃: 加大灯光数量: 边缘…

AI量化模型预测——baseline学习笔记

一、赛题理解 1. 赛题名称 AI量化模型预测 2. 赛题理解 本赛事是一个量化金融挑战,旨在通过大数据与机器学习的方法,使用给定的训练集和测试集数据,预测未来中间价的移动方向。参赛者需要理解市场行为的原理,创建量化策略&#…

【java安全】无Commons-Collections的Shiro550反序列化利用

文章目录 【java安全】无Commons-Collections的Shiro550反序列化利用Shiro550利用的难点CommonsBeanutils1是否可以Shiro中?什么是serialVersionUID?W 无依赖的Shiro反序列化利用链POC 【java安全】无Commons-Collections的Shiro550反序列化利用 Shiro5…

『HarmonyOS』万物互联,分布式操作系统

👨‍🎓作者简介:一位喜欢写作,计科专业大二菜鸟 🏡个人主页:starry陆离 🕒首发日期:2022年7月5日星期二 🌌上期文章:『首期文章』 📚订阅专栏&…

从0到1框架搭建,Python+Pytest+Allure+Git+Jenkins接口自动化框架(超细整理)

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 接口测试是对系统…

将word每页页眉单独设置

在进行论文排版的时候,总是会出现页眉的页码设置问题,比如出现奇数或偶数页码一致,尝试将前面页码改掉,后面再修改前面也进行了变动,将每页页眉单独设置: (1)在第一页的最后一行输入…

【雕爷学编程】MicroPython动手做(29)——物联网之SIoT

知识点:什么是掌控板? 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED…

【2023年电赛】运动目标控制与自动追踪系统(E 题)最简单实现

本方案的思路是最简单的不涉及复杂算法:识别矩形框,标记矩形框,输出坐标和中心点,计算长度,控制舵机移动固定长度!仅供完成基础功能参考,不喜勿喷! # 实现运动目标控制与自动追踪系…

企业上云实施路线图

企业上云步骤主要分为规划、设计、实施、验证、运维五个阶段。https://articles.e-works.net.cn/cloud/article144684.htm

JVM基础篇-直接内存

JVM基础篇-直接内存 什么是直接内存? 直接内存( 堆外内存 ) 指的是 Java 应用程序通过直接方式从操作系统中申请的内存,这块内存不属于jvm 传统方式读取文件 首先会从用户态切换到内核态,调用操作系统函数从磁盘读取文件,读取一部分到操作系统缓冲区…

Azure pipeline自动化打包发布

pipeline自动化,提交代码后,就自动打包,打包成功后自动发布 第一步 pipeline提交代码后,自动打包。 1 在Repos,分支里选择要触发的分支,这里选择cn_china,对该分支设置分支策略 2 在生产验证中增加新的策略 3 在分支安…

2023华数杯数学建模C题完整论文,包括每个问题的代码

目录 摘要 2.1 问题 1 的问题分析 2.2 问题 2 的问题分析 2.3 问题 3 的问题分析 完成版论文见此 摘要 问题一,我们使用了390名3至12个月婴儿及其母亲的相关数据,探讨了母亲的 身体和心理指标对婴儿的行为特征和睡眠质量的影响。我们首先进行了描述…

【JavaEE初阶】博客系统后端

文章目录 一. 创建项目 引入依赖二. 设计数据库三. 编写数据库代码四. 创建实体类五. 封装数据库的增删查改六. 具体功能书写1. 博客列表页2. 博客详情页3. 博客登录页4. 检测登录状态5. 实现显示用户信息的功能6. 退出登录状态7. 发布博客 一. 创建项目 引入依赖 创建blog_sy…

Dockerfile构建lamp镜像

1、构建目录 [rootdocker ~]# mkdir compose_lamp [rootdocker ~]# cd compose_lamp/ 2、编写Docekerfile [rootdocker compose_lamp]# vim Dockerfile #基础镜像 FROM centos:7#维护该镜像的用户信息 MAINTAINER Crushlinux <crushlinux163.com>#安装httpd RUN yum -…

LEARNING TO EXPLORE USING ACTIVE NEURAL SLAM 论文阅读

论文信息 题目&#xff1a;LEARNING TO EXPLORE USING ACTIVE NEURAL SLAM 作者&#xff1a;Devendra Singh Chaplot, Dhiraj Gandhi 项目地址&#xff1a;https://devendrachaplot.github.io/projects/Neural-SLAM 代码地址&#xff1a;https://github.com/devendrachaplot/N…

Java超级玛丽小游戏制作过程讲解 第一天 创建窗口

package com.sxt;import javax.swing.*; import java.awt.event.KeyEvent; import java.awt.event.KeyListener;public class MyFrame extends JFrame implements KeyListener {//设置窗口的大小为800*600public MyFrame() {this.setSize(800, 600);//设置窗口中显示this.setLo…

2023牛客暑期多校训练营6-A Tree

2023牛客暑期多校训练营6-A Tree https://ac.nowcoder.com/acm/contest/57360/A 文章目录 2023牛客暑期多校训练营6-A Tree题意解题思路代码 题意 解题思路 最大价值和这个数据范围&#xff0c;一眼 d p dp dp。 直接在树上并不好处理&#xff0c;问题是如何有效转化、处理…