AI Chat 设计模式:12. 享元模式

本文是该系列的第十二篇,采用问答式的方式展开,问题由我提出,答案由 Chat AI 作出,灰色背景的文字则主要是我的一些思考和补充。

问题列表

  • Q.1 给我介绍一下享元模式
  • A.1
  • Q.2 也就是说,其实共享的是对象的内部状态,外部状态还是要多次创建的吧
  • A.2
  • Q.3 明白,细说一下享元模式的组成吧
  • A.3
  • Q.4 举一个享元模式的例子吧,使用c++
  • A.4
  • Q.5 物理学中有说“同一个质点不可能在同一时刻位于不同的空间中”,那同一个矩形是如何在不同的位置上显示出来的呢?
  • A.5
  • Q.6 那把你前面举得享元模式的例子再完善一下,体现出是如何把同一个矩形绘制到不同的位置,并赋予了不同的颜色
  • A.6
  • Q.7 我大概明白了,请继续给我举一些享元模式的应用场景,帮我加深理解,不用给出具体代码
  • A.7

Q.1 给我介绍一下享元模式

A.1

享元模式是一种软件设计模式,用于提高系统的性能和内存利用率。该模式通过共享对象来减少内存消耗,特别是在大量对象需要同时存在的情况下。

在享元模式中,对象分为两种:内部状态外部状态内部状态是不随外部环境变化而变化的状态,可以被多个对象共享;而外部状态则是随外部环境变化而变化的状态,每个对象都有自己的外部状态

具体而言,享元模式将对象的创建和管理分为两部分:共享的部分和独立的部分。共享的部分被封装在享元对象中,可以被多个具体对象共享,而独立的部分则由客户端管理。当需要创建对象时,客户端首先通过工厂类获取享元对象,然后向享元对象传递该对象的外部状态。享元对象根据外部状态进行处理,并返回结果给客户端。

通过使用享元模式,系统可以减少内存占用,提高性能。因为多个对象共享内部状态,所以需要的内存比创建每个对象的内存总和要小。同时,由于外部状态由客户端管理,所以可以更灵活地操作对象,不同的对象可以共享相同的内部状态,提高了系统的可扩展性。

总结一下,享元模式通过共享对象的方式来减少内存消耗,在某些情况下可以显著提高系统的性能和内存利用率。它适用于有大量相似对象需要同时存在的场景,如文本编辑器中的字符对象、网页中的图片对象等。

享元,也即共享单元、共享对象。
目的:减少内存消耗。享元的英文名叫 Flyweight,轻量级的意思,就体现出这一点。
手段:把对象分为内部状态和外部状态,内部状态共享,外部状态随外部环境变化。

Q.2 也就是说,其实共享的是对象的内部状态,外部状态还是要多次创建的吧

A.2

是的,你理解得很对。在享元模式中,对象的内部状态是可以被共享的,而外部状态是需要根据需要多次创建的

具体来说,内部状态是对象的固有属性,它不受外部环境的影响,因此可以被多个对象共享。而外部状态是随着外部环境的变化而变化的属性,每个对象都会有自己独立的外部状态。

当使用享元模式时,我们会将对象的内部状态封装在享元对象中,以实现共享。客户端在创建对象时会将外部状态传递给享元对象,享元对象基于这个外部状态进行处理,并返回结果给客户端。因此,每个对象在使用时都会有自己独立的外部状态。

通过共享内部状态,我们可以大幅度减少内存占用,因为多个对象可以共享相同的内部状态对象。而外部状态则根据需要传递给享元对象,以创建具有不同外部状态的对象。这样既能提高系统性能,又能灵活地处理不同的外部状态。

需要注意的是,在使用享元模式时,对于外部状态的管理是由客户端来负责的,而不是由享元对象来管理。享元对象只关心内部状态的共享和操作,具体的外部状态管理由客户端决定。这样可以使系统更加灵活和可扩展。

来个比喻,就好像活字印刷术吧。每个汉字就一个模子(享元),每个字的字形、大小是固定的,也就是其内部状态,往外拓印的时候,加上不同的染料(外部状态),就能制造出很多个各种颜色的字。这就是享元模式的思想。

Q.3 明白,细说一下享元模式的组成吧

A.3

享元模式由以下几个组成部分构成:

  1. 享元接口(Flyweight Interface):定义了享元对象的外部状态相关方法,通过这些方法可以传递外部状态给享元对象。

  2. 具体享元类(Concrete Flyweight):实现了享元接口,负责实现并处理外部状态的具体逻辑。具体享元类可以被多个客户端共享。

  3. 享元工厂类(Flyweight Factory):负责创建和管理享元对象,它维护一个享元池(或称为对象池),用于存储已经创建的享元对象。享元工厂类提供了获取享元对象的方法,以供客户端使用。当客户端请求一个享元对象时,享元工厂类首先查找是否已经创建了符合要求的享元对象,如果存在就直接返回;如果不存在,则创建新的享元对象并加入享元池中,以备下次使用。

  4. 客户端(Client):通过享元工厂类获取享元对象,并根据需要传递外部状态给享元对象进行操作。客户端负责维护和管理享元对象的外部状态。

以上是享元模式的主要组成部分。通过使用享元模式,可以有效地减少内存消耗,提高系统性能和资源利用率,尤其在大量相似对象需要同时存在的情况下尤为适用。

享元接口定义外部状态相关方法,享元工厂创建和管理享元对象(内部状态)。

Q.4 举一个享元模式的例子吧,使用c++

A.4

当我们绘制一个含有大量相同形状的二维图形时,可以使用享元模式来减少内存消耗。下面是一个使用C++实现享元模式的简单例子:

首先,我们定义一个简单的图形类 Shape,它有两个属性:形状类型和颜色。其中形状类型是内部状态,颜色是外部状态

class Shape {
public:virtual void draw(const std::string& color) = 0;
};

然后,我们创建具体的图形类 Rectangle,用于绘制矩形形状。

class Rectangle : public Shape {
public:void draw(const std::string& color) override {std::cout << "Drawing a rectangle with color " << color << std::endl;}
};

draw 这个接口含义一个参数,用来接收外部状态,颜色。

接下来,我们实现享元工厂类 ShapeFactory,用于创建和管理享元对象。

class ShapeFactory {
private:std::map<std::string, Shape*> shapePool;public:Shape* getShape(const std::string& type) {Shape* shape = shapePool[type];if (!shape) {if (type == "rectangle") {shape = new Rectangle();shapePool[type] = shape;}// 可以添加更多的具体图形类}return shape;}
};

工厂用户获取不同形状,也就是不同的元。

最后,我们可以在客户端代码中使用享元模式来绘制多个形状。

int main() {ShapeFactory shapeFactory;Shape* shape1 = shapeFactory.getShape("rectangle");Shape* shape2 = shapeFactory.getShape("rectangle");shape1->draw("red"); // 绘制一个红色的矩形shape2->draw("blue"); // 绘制一个蓝色的矩形// 注意:shape1和shape2指向的是同一个矩形对象,因为矩形是可以共享的delete shape1;delete shape2;return 0;
}

在上面的例子中,ShapeFactory 维护着一个享元池(shapePool),在获取图形对象时,首先从池中查找是否已经存在符合要求的对象,如果存在则直接返回;如果不存在,则创建一个新的对象并将其添加到享元池中。通过共享矩形对象,我们可以减少内存消耗。

请注意,这只是一个简单的示例,实际使用时还需要考虑对象的生命周期管理、线程安全性等问题。

Q.5 物理学中有说“同一个质点不可能在同一时刻位于不同的空间中”,那同一个矩形是如何在不同的位置上显示出来的呢?

A.5

物理学中的“同一个质点不可能在同一时刻位于不同的空间中”是指在经典物理学中,一个物体在某一时刻只能存在于一个确定的位置。这是因为经典物理学中的物体被认为是具有确定位置和确定动量的,即满足粒子本质的局域性。

然而,在计算机图形学中的矩形绘制中,并不是通过物理定律来模拟的。计算机图形学是一门应用数学和计算机科学的学科,它的目标是通过计算机算法和技术来生成和处理图像。

当我们在计算机图形学中绘制一个矩形时,实际上是使用数学坐标系来描述矩形的位置和形状。这些坐标系是虚拟的,并不是物理空间中的真实位置。计算机图形学中的物体是通过顶点和像素来表示的。

对于一个矩形来说,我们可以通过设置矩形的顶点坐标(如左上角和右下角)来确定其位置。无论在屏幕的哪个位置绘制矩形,都是通过计算机图形学的算法将矩形的顶点映射到屏幕上的像素点。这些像素点实际上是屏幕上的具体位置,而不是物理空间中的位置

因此,同一个矩形在不同的位置上显示,是通过计算机图形学中的算法和技术来实现的,并不违反物理学中的局域性原理。

还记得活字印刷术吗?

Q.6 那把你前面举得享元模式的例子再完善一下,体现出是如何把同一个矩形绘制到不同的位置,并赋予了不同的颜色

A.6

好的,让我们再细化前面的享元模式的例子,以展示如何绘制同一个矩形到不同的位置,并为其赋予不同的颜色。

首先,我们更新 Shape 接口,使其可以传递位置信息和颜色信息。

class Shape {
public:virtual void draw(const std::string& color, int x, int y) = 0;
};

现在有位置、颜色两个外部状态,draw() 方法有位置、颜色两个参数。当然,不一定是新增参数,也可以通过其他方式来接收外部状态。

接下来,我们更新具体的图形类 Rectangle,使其可以接收并使用位置和颜色信息。

class Rectangle : public Shape {
public:void draw(const std::string& color, int x, int y) override {std::cout << "Drawing a rectangle at position (" << x << ", " << y << ") with color " << color << std::endl;}
};

然后,我们更新享元工厂类 ShapeFactory,使其能够传递位置信息给矩形对象并在指定位置进行绘制。

class ShapeFactory {
private:std::map<std::string, Shape*> shapePool;public:Shape* getShape(const std::string& type) {Shape* shape = shapePool[type];if (!shape) {if (type == "rectangle") {shape = new Rectangle();shapePool[type] = shape;}// 可以添加更多的具体图形类}return shape;}void drawShape(const std::string& type, const std::string& color, int x, int y) {Shape* shape = getShape(type);shape->draw(color, x, y);}
};

最后,在客户端代码中,我们可以通过享元工厂类指定矩形的位置和颜色进行绘制。

int main() {ShapeFactory shapeFactory;shapeFactory.drawShape("rectangle", "red", 10, 20); // 绘制一个红色的矩形在位置 (10, 20)shapeFactory.drawShape("rectangle", "blue", 50, 30); // 绘制一个蓝色的矩形在位置 (50, 30)shapeFactory.drawShape("rectangle", "green", 100, 50); // 绘制一个绿色的矩形在位置 (100, 50)return 0;
}

在上述代码中,我们通过调用 ShapeFactory 的 drawShape 方法,传递了不同的颜色和位置参数,从而绘制了同一个矩形到不同的位置,并赋予了不同的颜色。

请注意,这只是一个简单的示例,实际使用时我们还需要考虑更多的绘制参数和逻辑。但核心的思想是,通过维护共享的矩形对象以及传递外部状态信息,我们可以在不同的位置上绘制出同一个矩形,并赋予不同的颜色。这样,我们可以在节约内存的同时得到多样化的绘制结果。

同样看一下类图。这里的 OtherShape 指三角形、圆形等其他图形。
draw 方法提供外部状态的传入口。
ShapeFactory 中的 getShape 用于获取不同的元(不同的形状对象)。
在这里插入图片描述

Q.7 我大概明白了,请继续给我举一些享元模式的应用场景,帮我加深理解,不用给出具体代码

A.7

当我们考虑使用享元模式时,通常是为了解决以下两个问题:对象的数量太大,导致内存消耗过大;对象的属性可以被拆分为内部状态和外部状态,且内部状态可以共享

下面是一些常见的享元模式的应用场景:

  1. 文字编辑器:在一个文字编辑器中,每个字符都是一个对象,如果为每个字符都创建一个独立的对象会消耗大量的内存。使用享元模式可以将相同字符的对象共享,并仅保存字符的内部状态(例如字符的字体、大小),以减少内存的使用。

  2. 地图和游戏中的图块:在地图或游戏中,可能有许多相同的图块,例如草地、石头等。使用享元模式可以共享这些图块对象,并在需要时通过传递外部状态来进行定位和绘制。

  3. 缓存管理:缓存是一种常见的使用享元模式的场景。比如,数据库查询结果的缓存,如果结果对象已经存在于缓存中,则直接使用共享的对象,避免重复查询和创建新对象。

  4. 线程池:在多线程的应用中,为每个任务创建与之对应的线程开销很大。使用享元模式可以维护一个线程池,并在需要时共享线程对象,提高性能和资源利用率。

  5. 网络连接池:在网络编程中,创建和销毁网络连接也需要消耗较多的资源。通过使用享元模式,可以维护一个连接池,并共享可用的连接对象,以减少连接的创建和销毁次数,提高系统的性能和可扩展性。

需要注意的是,享元模式并不适用于所有情况。只有当对象的内部状态可以共享,并且外部状态可以通过参数传递时,才适合使用享元模式。在一些场景下,由于复杂性和维护成本的问题,可能选择不使用享元模式。因此,在具体应用时需仔细考虑使用场景和模式的适配性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/75940.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TCP的三次握手四次挥手

TCP的三次握手和四次挥手实质就是TCP通信的连接和断开。 三次握手&#xff1a;为了对每次发送的数据量进行跟踪与协商&#xff0c;确保数据段的发送和接收同步&#xff0c;根据所接收到的数据量而确认数据发送、接收完毕后何时撤消联系&#xff0c;并建立虚连接。 四次挥手&a…

【数据结构】快速排序

快速排序是一种高效的排序算法&#xff0c;其基本思想是分治法。它将一个大问题分解成若干个小问题进行解决&#xff0c;最后将这些解合并得到最终结果。 快速排序的主要思路如下&#xff1a; 选择一个基准元素&#xff1a;从待排序的数组中选择一个元素作为基准&#xff08;…

gitlab CI/CD 安装 gitlab runner

一、为什么需要安装gitlab runner &#xff1f; 极狐GitLab Runner 极狐GitLab Runner 是在流水线中运行作业的应用&#xff0c;与极狐GitLab CI/CD 配合运作。 说白了就是你部署的一个agent。 二、如何安装&#xff1f; 1.介绍通过helm部署github runner 2.helm添加仓库 h…

openCV图像读取和显示

文章目录 一、imread二、namedWindow三、imshow #include <opencv2/opencv.hpp> #include <iostream>using namespace std; using namespace cv;int main(int argc,char** argv) {cv::Mat img imread("./sun.png"); //3通道 24位if (img.empty()) {std:…

多语言gRPC开发入门与避坑指南

目录 gRPC相关介绍 什么是gPRC gPRC的优点 gPRC的缺点 gPRC定位 协议缓冲区&#xff08;Protocol Buffers&#xff09; 四种调用方式 gRPC开发三大步骤 第一步&#xff1a;定义和编写proto服务文件 第二步&#xff1a;proto文件转化为gRPC代码 第三步&#xff1a;调…

致远A8+数据库账密信息泄露

声明 本文仅用于技术交流&#xff0c;请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;文章作者不为此承担任何责任。 文章作者拥有对此文章的修改和解释权。如欲转载或传播此文章&#xff0c…

【论文阅读24】Better Few-Shot Text Classification with Pre-trained Language Model

论文相关 论文标题&#xff1a;Label prompt for multi-label text classification&#xff08;基于预训练模型对少样本进行文本分类&#xff09; 发表时间&#xff1a;2021 领域&#xff1a;多标签文本分类 发表期刊&#xff1a;ICANN&#xff08;顶级会议&#xff09; 相关代…

Windows环境下VSCode安装PlatformIO Cero报错ERROR: HTTP error 403 while getting

安装PlatformIO插件成功&#xff0c;初始化失败 错误信息判断问题尝试访问https://pypi.tuna.tsinghua.edu.cn/simple/platformio/成功点击文件后报错如下&#xff1a; 解决问题- 换源 &#xff08; Windows下有两个地方需要更改&#xff09;cmd命令行Pip文件 总结&#xff1a;…

Android如何用系统签名打包应用

前言 应用使用系统签名可以在用户不需要手动授权的情况下自动获取权限。适合一些定制系统中集成apk的方案商。 步骤 需要在AndroidManifest.xml中添加共享系统进程属性&#xff1a; android:sharedUserId"android.uid.system"如下图所示&#xff1a; 找到系统定制…

opencv基础40-礼帽运算(原始图像减去其开运算)cv2.MORPH_TOPHAT

礼帽运算是用原始图像减去其开运算图像的操作。礼帽运算能够获取图像的噪声信息&#xff0c;或者得到比原始图像的边缘更亮的边缘信息。 例如&#xff0c;图 8-22 是一个礼帽运算示例&#xff0c;其中&#xff1a; 左图是原始图像。中间的图是开运算图像。右图是原始图像减开运…

车载开发核心技术——SystemUI控制技术

SystemUI是指车载开发中的一个重要组件&#xff0c;它负责管理和控制车机的用户界面和交互功能。本文将详细介绍SystemUI的各项控制技术&#xff0c;包括音量控制、RingtonePlayer、电源管理、任务管理、通知栏和服务定制&#xff0c;并提供相关代码示例和解析。 一、音量控制…

百度Apollo规划算法——OBB障碍物检测代码解析

百度Apollo规划算法——Box障碍物检测代码解析 前言代码代码分析f1f2f3f4f5f6 参考 前言 本文主要分析Apollo代码中函数bool Box::HasOverlap(const Box2d &box) const {}的数学原理。 在阅读此部分代码时&#xff0c;第一遍没看懂return的一堆什么意思&#xff0c;百度之后…

iOS——Block签名

首先来看block结构体对象Block_layout&#xff08;等同于clang编译出来的__Block_byref_a_0&#xff09; #define BLOCK_DESCRIPTOR_1 1 struct Block_descriptor_1 {uintptr_t reserved;uintptr_t size; };#define BLOCK_DESCRIPTOR_2 1 struct Block_descriptor_2 {// requi…

谈谈关于新能源汽车的话题

新能源汽车是指使用新型能源替代传统燃油的汽车&#xff0c;主要包括纯电动汽车、插电式混合动力汽车和燃料电池汽车等。随着环境污染和能源安全问题的日益突出&#xff0c;新能源汽车已经成为全球汽车行业的发展趋势。下面我们来谈谈关于新能源汽车的话题。 首先&#xff0c;新…

uC-OS2 V2.93 STM32L476 移植:环境搭建篇

前言 uC-OS2 是比较经典的 RTOS&#xff0c;如今软件授权已经改为 Apache License Version 2.0&#xff0c;意味着可以免费商用了 当前 uC-OS2 的最新版本是&#xff1a; V2.93&#xff0c;打算研究一下 RTOS 的设计思想&#xff0c;所以想在已有的开发板&#xff1a;NUCLEO-L…

C语言阶段性测试题

【前言】&#xff1a;本部分是C语言初阶学完阶段性测试题&#xff0c;最后一道编程题有一定的难度&#xff0c;需要多去揣摩&#xff0c;代码敲多了&#xff0c;自然就感觉不难了&#xff0c;加油&#xff0c;铁汁们&#xff01;&#xff01;&#xff01; 一、选择题 1.下面程…

【雕爷学编程】Arduino动手做(181)---Maixduino AI开发板12

37款传感器与执行器的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&am…

使用 OpenCV 和 Python 卡通化图像-附源码

介绍 在本文中,我们将构建一个有趣的应用程序,它将卡通化提供给它的图像。为了构建这个卡通化器应用程序,我们将使用 python 和 OpenCV。这是机器学习令人兴奋的应用之一。在构建此应用程序时,我们还将了解如何使用 easygui、Tkinter 等库。在这里,您必须选择图像,然后应…

20天学rust(一)和rust say hi

关注我&#xff0c;学习Rust不迷路 工欲善其事&#xff0c;必先利其器。第一节我们先来配置rust需要的环境和安装趁手的工具&#xff0c;然后写一个简单的小程序。 安装 Rust环境 Rust 官方有提供一个叫做 rustup 的工具&#xff0c;专门用于 rust 版本的管理&#xff0c;网…

Modbus TCP转Profinet网关modbus tcp转以太网

大家好&#xff0c;今天我们来聊一聊如何使用捷米特的Profinet转modbusTCP协议转换网关在博图上进行非透传型配置。 1, 首先&#xff0c;我们需要安装捷米特JM-TCP-PN的GSD文件&#xff0c;并根据现场设备情况配置modbusTCP地址。然后&#xff0c;在博图中添加该GSD文件&#x…