手撕B-树

一、概述

1.历史

B树(B-Tree)结构是一种高效存储和查询数据的方法,它的历史可以追溯到1970年代早期。B树的发明人Rudolf Bayer和Edward M. McCreight分别发表了一篇论文介绍了B树。这篇论文是1972年发表于《ACM Transactions on Database Systems》中的,题目为"Organization and Maintenance of Large Ordered Indexes"。

这篇论文提出了一种能够高效地维护大型有序索引的方法,这种方法的主要思想是将每个节点扩展成多个子节点,以减少查找所需的次数。B树结构非常适合应用于磁盘等大型存储器的高效操作,被广泛应用于关系数据库和文件系统中。

B树结构有很多变种和升级版,例如B+树,B*树和SB树等。这些变种和升级版本都基于B树的核心思想,通过调整B树的参数和结构,提高了B树在不同场景下的性能表现。

总的来说,B树结构是一个非常重要的数据结构,为高效存储和查询大量数据提供了可靠的方法。它的历史可以追溯到上个世纪70年代,而且在今天仍然被广泛应用于各种场景。

2.B-树的优势

B树和AVL树、红黑树相比,B树更适合磁盘的增删改查,而AVL和红黑树更适合内存的增删改查。

假设存储100万的数据:

  • 使用AVL来存储,树高为: l o g 2 1000000 ≈ 20 log_21000000≈20 log2100000020 (20次的磁盘IO很慢,但是20次的内存操作很快)
  • 使用B-树存储,最小度数为500,树高为:3

B树优势:

  • 磁盘存储比内存存储慢很多,尤其是访问磁盘的延迟相对较高。每次访问磁盘都需要消耗更多的时间,而B树的设计可以最大化地减少对磁盘的访问次数。
  • 磁盘访问一般是按块读取的,而B树的节点通常设计为与磁盘块大小一致。由于B树是多路的,单次磁盘访问通常会加载多个数据项,而不是像AVL树和红黑树那样每次只读取一个节点。
  • 在磁盘中存储B树时,操作系统通常会将树的部分结构加载到内存中以便快速查询,避免了频繁的磁盘访问。
  • 在数据库和文件系统中,数据通常是大规模的,存储在外部存储介质上。B树特别适合大规模数据的增删改查,因为它减少了不必要的磁盘访问,能够高效地执行复杂的数据操作。

二、特性

1.度和阶

  • 度(degree):节点的孩子数
  • 阶(order):所有节点孩子最大值

2.特性

  • 每个节点具有

    • 属性 n,表示节点中 key 的个数
    • 属性 leaf,表示节点是否是叶子节点
    • 节点 key 可以有多个,以升序存储
  • 每个非叶子节点中的孩子数是 n + 1、叶子节点没有孩子

  • 最小度数t(节点的孩子数称为度)和节点中键数量的关系如下:

最小度数t键数量范围
21 ~ 3
32 ~ 5
43 ~ 7
n(n-1) ~ (2n-1)

其中,当节点中键数量达到其最大值时,即 3、5、7 … 2n-1,需要分裂

  • 叶子节点的深度都相同

三、实现

1.定义节点类

static class Node {// 关键字int[] keys;// 关键字数量int keyNum;// 孩子节点Node[] children;// 是否是叶子节点boolean leafFlag = true;// 最小度数:最少孩子数(决定树的高度,度数越大,高度越小)int t;// ≥2public Node(int t) {this.t = t;// 最多的孩子数(约定)this.children = new Node[2 * t];this.keys = new int[2 * t -1];}
}
1.1 节点类相关方法

查找key:查找目标22,在当前节点的关键字数组中依次查找,找到了返回;没找到则从孩子节点找:

  • 当前节点是叶子节点:目标不存在
  • 非叶子结点:当key循环到25,大于目标22,此时从索引4对应的孩子key数组中继续查找,依次递归,直到找到为止。
    在这里插入图片描述

根据key获取节点

/*** 根据key获取节点* @param key* @return*/
Node get(int key) {// 先从当前key数组中找int i = 0;while (i < keyNum) {if (keys[i] == key) {// 在当前的keys关键字数组中找到了return this;}if (keys[i] > key) {// 当数组比当前key大还未找到时,退出循环break;}i++;}// 如果是叶子节点,没有孩子了,说明key不存在if (leafFlag) {return null;} else {// 非叶子节点,退出时i的值就是对应范围的孩子节点数组的索引,从对应的这个孩子数组中继续找return children[i].get(key);}
}

向指定索引插入key

/*** 向keys数组中指定的索引位置插入key* @param key* @param index*/
void insertKey(int key,int index) {/*** [0,1,2,3]* src:源数组* srcPos:起始索引* dest:目标数组* destPos: 目标索引* length:拷贝的长度*/System.arraycopy(keys, index, keys, index + 1, keyNum - index);keys[index] = key;keyNum++;
}

向指定索引插入child

/*** 向children指定索引插入child** @param child* @param index*/
void insertChild(Node child, int index) {System.arraycopy(children, index, children, index + 1, keyNum - index);children[index] = child;
}

2.定义树

public class BTree {// 根节点private Node root;// 树中节点最小度数int t;// 最小key数量 在创建树的时候就指定好final int MIN_KEY_NUM;// 最大key数量final int MAX_KEY_NUM;public BTree() {// 默认度数设置为2this(2);}public BTree(int t) {this.t = t;root = new Node(t);MIN_KEY_NUM = t - 1;MAX_KEY_NUM = 2 * t - 1;}
}    

判断key在树中是否存在

/*** 判断key在树中是否存在* @param key* @return*/
public boolean contains(int key) {return root.get(key) != null;
}

3.新增key:

  • 1.查找插入位置:从根节点开始,沿着树向下查找,直到找到一个叶子节点,这个叶子节点包含的键值范围覆盖了要插入的键值。
  • 2.插入键值:在找到的叶子节点中插入新的键值。如果叶子节点中的键值数量没有超过B树的阶数(即每个节点最多可以包含的键值数量),则插入操作完成。
  • 3.分裂节点:如果叶子节点中的键值数量超过了B树的阶数,那么这个节点需要分裂。

如果度为3,最大key数量为:2*3-1=5,当插入了8后,此时达到了最大数量5,需要分裂:
叶子节点分裂

分裂逻辑:
分裂节点数据一分为三:

  • 左侧数据:本身左侧的数据留在该节点
  • 中间数据:中间索引2(度-1)的数据6移动到父节点的索引1(被分裂节点的索引)处
  • 右侧数据:从索引3(度)开始的数据,移动到新节点,新节点的索引值为分裂节点的index+1

如果分裂的节点是非叶子节点:
需要多一步操作:右侧数据需要和孩子一起连带到新节点去:
非叶子节点分裂
分裂的是根节点:
需要再创建多一个节点来当做根节点,此根节点为父亲,存入中间的数据。
其他步骤同上。
根节点分裂
分裂方法:

/*** 节点分裂* 左侧数据:本身左侧的数据留在该节点* 中间数据:中间索引2(度-1)的数据6移动到父节点的索引1(被分裂节点的索引)处* 右侧数据:从索引3(度)开始的数据,移动到新节点,新节点的索引值为分裂节点的index+1* @param node 要分裂的节点* @param index 分裂节点的索引* @param parent 要分裂节点的父节点**/
public void split(Node node, int index, Node parent) {// 没有父节点,当前node为根节点if (parent == null) {// 创建出新的根来存储中间数据Node newRoot = new Node(t);newRoot.leafFlag = false;newRoot.insertChild(node, 0);// 更新根节点为新创建的newRootthis.root = newRoot;parent = newRoot;}// 1.处理右侧数据:创建新节点存储右侧数据Node newNode = new Node(t);// 新创建的节点跟原本分裂节点同级newNode.leafFlag = node.leafFlag;// 新创建节点的数据从 原本节点【度】位置索引开始拷贝 拷贝长度:t-1System.arraycopy(node.keys, t, newNode.keys, 0, t - 1);// 如果node不是叶子节点,还需要把node的一部分孩子也同时拷贝到新节点的孩子中if (!node.leafFlag) {System.arraycopy(node.children, t, newNode.children, 0, t);}// 更新新节点的keyNumnewNode.keyNum = t - 1;// 更新原本节点的keyNumnode.keyNum = t - 1;// 2.处理中间数据:【度-1】索引处的数据 移动到父节点【分裂节点的索引】索引处// 要插入父节点的数据:int midKey = node.keys[t - 1];parent.insertKey(midKey, index);// 3. 新创建的节点作为父亲的孩子parent.insertChild(newNode, index + 1);// parent的keyNum在对应的方法中已经更新了
}

新增key:

/*** 新增key** @param key*/
public void put(int key) {doPut(root, key, 0, null);
}/*** 执行新增key* 1.查找插入位置:从根节点开始,沿着树向下查找,直到找到一个叶子节点,这个叶子节点包含的键值范围覆盖了要插入的键值。* 2.插入键值:在找到的叶子节点中插入新的键值。如果叶子节点中的键值数量没有超过B树的阶数(即每个节点最多可以包含的键值数量),则插入操作完成。* 3.分裂节点:如果叶子节点中的键值数量超过了B树的阶数,那么这个节点需要分裂。* @param node 待插入元素的节点* @param key 插入的key* @param nodeIndex  待插入元素节点的索引* @param nodeParent 待插入节点的父节点*/
public void doPut(Node node, int key, int nodeIndex, Node nodeParent) {// 查找插入位置int index = 0;while (index < node.keyNum) {if (node.keys[index] == key ) {// 找到了 做更新操作 (因为没有维护value,所以就不用处理了)return;}if (node.keys[index] > key) {// 没找到该key, 退出循环,index的值就是要插入的位置break;}index++;}// 如果是叶子节点,直接插入if (node.leafFlag) {node.insertKey(key, index);} else {// 非叶子节点,继续从孩子中找到插入位置 父亲的这个待插入的index正好就是元素要插入的第x个孩子的位置doPut(node.children[index], key , index, node);}// 处理节点分裂逻辑 : keyNum数量达到上限,节点分裂if (node.keyNum == MAX_KEY_NUM) {split(node, nodeIndex, nodeParent);}
}

4.删除key

情况一:删除的是叶子节点的key

节点是叶子节点,找到了直接删除,没找到返回。

情况二:删除的是非叶子节点的key

没有找到key,继续在孩子中找。
找到了,把要删除的key和替换为后继key,删掉后继key。

平衡树:该key被删除后,key数目<key下限(t-1),树不平衡,需要调整
  • 如果左边兄弟节点的key是富裕的,可以直接找他借:右旋,把父亲一个节点的旋转下来(在父亲中找到失衡节点的前驱节点),把兄弟的一个节点旋转上去(旋转上去的是兄弟中最大的key)。
    在这里插入图片描述
  • 如果右边兄弟节点的key是富裕的,可以直接找他借:左旋,把父亲的旋转下来,把兄弟的旋转上去。在这里插入图片描述
  • 当没有兄弟是富裕时,没办法借,采用向左合并:父亲和失衡节点都合并到左侧的节点中。
    在这里插入图片描述
    右旋详细流程:
    旋转
    处理孩子:
    处理孩子

向左合并详细流程:
在这里插入图片描述
根节点调整的情况:
在这里插入图片描述

调整平衡代码:

/*** 树的平衡* @param node 失衡节点* @param index 失衡节点索引* @param parent 失衡节点父节点*/
public void balance(Node node, int index, Node parent) {if (node == root) {// 如果是根节点 当调整到根节点只剩下一个key时,要替换根节点 (根节点不能为null,要保证右孩子才替换)if (root.keyNum == 0 && root.children[0] != null) {root = root.children[0];}return;}// 拿到该节点的左右兄弟,判断节点是不是富裕的,如果富裕,则找兄弟借Node leftBrother = parent.childLeftBrother(index);Node rightBrother = parent.childRightBrother(index);// 左边的兄弟富裕:右旋if (leftBrother != null && leftBrother.keyNum > MIN_KEY_NUM) {// 1.要旋转下来的key:父节点中【失衡节点索引-1】的key:parent.keys[index-1];插入到失衡节点索引0位置// (这里父亲节点旋转走的不用删除,因为等会左侧的兄弟旋转上来会覆盖掉)node.insertKey(parent.keys[index - 1], 0);// 2.0 如果左侧节点不是叶子节点,有孩子,当旋转一个时,只需要留下原本孩子数-1 ,把最大的孩子过继给失衡节点的最小索引处(先处理后事)if (!leftBrother.leafFlag) {node.insertChild(leftBrother.removeRightMostChild(), 0);}// 2.1 要旋转上去的key:左侧兄弟最大的索引key,删除掉,插入到父节点中【失衡节点索引-1】位置(此位置就是刚才在父节点旋转走的key的位置)// 这里要直接覆盖,不能调插入方法,因为这个是当初旋转下去的key。parent.keys[index - 1] = leftBrother.removeRightMostKey();return;}// 右边的兄弟富裕:左旋if (rightBrother != null && rightBrother.keyNum > MIN_KEY_NUM) {// 1.要旋转下来的key:父节点中【失衡节点索引】的key:parent.keys[index];插入到失衡节点索引最大位置keyNum位置// (这里父亲节点旋转走的不用删除,因为等会右侧的兄弟旋转上来会覆盖掉)node.insertKey(parent.keys[index], node.keyNum);// 2.0 如果右侧节点不是叶子节点,有孩子,当旋转一个时,只需要留下原本孩子数-1 ,把最小的孩子过继给失衡节点的最大索引处(孩子节点的索引比父亲要多1)if (!rightBrother.leafFlag) {node.insertChild(rightBrother.removeLeftMostChild(), node.keyNum + 1);}// 2.1 要旋转上去的key:右侧兄弟最小的索引key,删除掉,插入到父节点中【失衡节点索引-1】位置(此位置就是刚才在父节点旋转走的key的位置)// 这里要直接覆盖,不能调插入方法,因为这个是当初旋转下去的key。parent.keys[index] = rightBrother.removeLeftMostKey();return;}// 左右兄弟都不够,往左合并if (leftBrother != null) {// 向左兄弟合并// 1.把失衡节点从父亲中移除parent.removeChild(index);// 2.插入父节点的key到左兄弟 将父节点中【失衡节点索引-1】的key移动到左侧leftBrother.insertKey(parent.removeKey(index - 1), leftBrother.keyNum);// 3.插入失衡节点的key及其孩子到左兄弟node.moveToTarget(leftBrother);} else {// 右兄弟向自己合并// 1.把右兄弟从父亲中移除parent.removeChild(index + 1);// 2.把父亲的【失衡节点索引】 处的key移动到自己这里node.insertKey(parent.removeKey(index), node.keyNum);// 3.把右兄弟完整移动到自己这里rightBrother.moveToTarget(node);}
}

删除key:

/*** 删除指定key* @param node 查找待删除key的起点* @param parent 待删除key的父亲* @param nodeIndex 待删除的key的索引* @param key 待删除的key*/
public void doRemove(Node node, Node parent, int nodeIndex, int key) {// 找到被删除的keyint index = 0;// 循环查找待删除的keywhile (index < node.keyNum) {if (node.keys[index] >= key) {//找到了或者没找到break;}index++;}// 如果找到了 index就是要删除的key索引;// 如果没找到,index就是要在children的index索引位置继续找// 一、是叶子节点if (node.leafFlag) {// 1.1 没找到if (!found(node, key, index)) {return;}// 1.2 找到了else {// 删除当前节点index处的keynode.removeKey(index);}}// 二、不是叶子节点else {// 1.1 没找到if (!found(node, key, index)) {// 继续在孩子中找 查找的孩子的索引就是当前indexdoRemove(node.children[index], node, index, key);}// 1.2 找到了else {// 找到后继节点,把后继节点复制给当前的key,然后删除后继节点。// 在索引+1的孩子里开始,一直往左找,直到节点是叶子节点为止,就找到了后继节点Node deletedSuccessor = node.children[index + 1];while (!deletedSuccessor.leafFlag) {// 更新为最左侧的孩子deletedSuccessor = deletedSuccessor.children[0];}// 1.2.1 当找到叶子节点之后,最左侧的key就是后继keyint deletedSuccessorKey = deletedSuccessor.keys[0];// 1.2.2 把后继key赋值给待删除的keynode.keys[index] = deletedSuccessorKey;// 1.2.3 删除后继key 再调用该方法,走到情况一,删除掉该后继key: 起点为索引+1的孩子处,删除掉后继keydoRemove(node.children[index + 1], node, index + 1, deletedSuccessorKey);}}// 树的平衡:if (node.keyNum < MIN_KEY_NUM) {balance(node, nodeIndex, parent);}
}

节点相关方法:

        /*** 移除指定索引处的key* @param index* @return*/int removeKey(int index) {int deleted = keys[index];System.arraycopy(keys, index + 1, keys, index, --keyNum - index);return deleted;}/*** 移除最左索引处的key* @return*/int removeLeftMostKey(){return removeKey(0);}/*** 移除最右边索引处的key* @return*/int removeRightMostKey() {return removeKey(keyNum - 1);}/*** 移除指定索引处的child* @param index* @return*/Node removeChild(int index) {Node deleted = children[index];System.arraycopy(children, index + 1, children, index, keyNum - index);children[keyNum] = null;return deleted;}/*** 移除最左边的child* @return*/Node removeLeftMostChild() {return removeChild(0);}/*** 移除最右边的child* @return*/Node removeRightMostChild() {return removeChild(keyNum);}/*** 获取指定children处左边的兄弟* @param index* @return*/Node childLeftBrother(int index) {return index > 0 ? children[index - 1] : null;}/*** 获取指定children处右边的兄弟* @param index* @return*/Node childRightBrother(int index) {return index == keyNum ? null : children[index + 1];}/*** 复制当前节点到目标节点(key和child)* @param target*/void moveToTarget(Node target) {int start = target.keyNum;// 当前节点不是叶子节点 说明有孩子if (!leafFlag) {// 复制当前节点的孩子到目标节点的孩子中for (int i = 0; i <= keyNum; i++) {target.children[start + i] = children[i];}}// 复制key到目标节点的keys中for (int i = 0; i < keyNum; i++) {target.keys[target.keyNum++] = keys[i];}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/7618.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【2025年数学建模美赛F题】(顶刊论文绘图)模型代码+论文

全球网络犯罪与网络安全政策的多维度分析及效能评估 摘要1 Introduction1.1 Problem Background1.2Restatement of the Problem1.3 Literature Review1.4 Our Work 2 Assumptions and Justifications数据完整性与可靠性假设&#xff1a;法律政策独立性假设&#xff1a;人口统计…

【FreeRTOS 教程 四】队列创建与发布项目到队列

目录 一、FreeRTOS队列&#xff1a; &#xff08;1&#xff09;队列介绍&#xff1a; &#xff08;2&#xff09;用户模型说明&#xff1a; &#xff08;3&#xff09;阻塞队列&#xff1a; 二、队列管理 API&#xff1a; &#xff08;1&#xff09;uxQueueMessagesWaiti…

如何在data.table中处理缺失值

&#x1f4ca;&#x1f4bb;【R语言进阶】轻松搞定缺失值&#xff0c;让数据清洗更高效&#xff01; &#x1f44b; 大家好呀&#xff01;今天我要和大家分享一个超实用的R语言技巧——如何在data.table中处理缺失值&#xff0c;并且提供了一个自定义函数calculate_missing_va…

基于OpenCV实现的答题卡自动判卷系统

一、图像预处理 🌄 二、查找答题卡轮廓 📏 三、透视变换 🔄 四、判卷与评分 🎯 五、主函数 六、完整代码+测试图像集 总结 🌟 在这篇博客中,我将分享如何使用Python结合OpenCV库开发一个答题卡自动判卷系统。这个系统能够自动从扫描的答题卡中提取信…

C++ list 容器用法

C list 容器用法 C 标准库提供了丰富的功能&#xff0c;其中 <list> 是一个非常重要的容器类&#xff0c;用于存储元素集合&#xff0c;支持双向迭代器。<list> 是 C 标准模板库&#xff08;STL&#xff09;中的一个序列容器&#xff0c;它允许在容器的任意位置快速…

docker部署jenkins

环境&#xff1a; centos7.9 jenkins/jenkins:lts-jdk11 1、拉去jenkins镜像&#xff0c;请指明版本号 [rootlocalhost ~]# docker pull jenkins/jenkins:lts 开始拉取 拉取完成 [rootlocalhost ~]# docker pull jenkins/jenkins:lts lts: Pulling from jenkins/jenkins 0a9…

沃尔玛 礼品卡绑定 分析

声明: 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 逆向分析 部分代码参考 func doPost…

【2024年华为OD机试】 (A卷,100分)- 整理扑克牌(JavaScriptJava PythonC/C++)

一、问题描述 题目描述 给定一组数字,表示扑克牌的牌面数字,忽略扑克牌的花色,请按如下规则对这一组扑克牌进行整理: 步骤1:分组形成组合牌 炸弹:当牌面数字相同张数大于等于4时。葫芦:3张相同牌面数字 + 2张相同牌面数字,且3张牌与2张牌不相同。三张:3张相同牌面数…

Arduino大师练成手册 --控制 OLED

要在 Arduino 上使用 U8glib 库控制带有 7 个引脚的 SPI OLED 显示屏&#xff0c;你可以按照以下步骤进行&#xff1a; 7pin OLED硬件连接 GND&#xff1a;连接到 Arduino 的 GND 引脚。 VCC&#xff1a;连接到 Arduino 的 5V 引脚。 D0&#xff08;或 SCK/CLK&#xff09;…

单片机基础模块学习——按键

一、按键原理图 当把跳线帽J5放在右侧&#xff0c;属于独立按键模式&#xff08;BTN模式&#xff09;&#xff0c;放在左侧为矩阵键盘模式&#xff08;KBD模式&#xff09; 整体结构是一端接地&#xff0c;一端接控制引脚 之前提到的都是使用了GPIO-准双向口的输出功能&#x…

AWScurl笔记

摘要 AWScurl是一款专为与AWS服务交互设计的命令行工具&#xff0c;它模拟了curl的功能并添加了AWS签名版本4的支持。这一特性使得用户能够安全有效地执行带有AWS签名的请求&#xff0c;极大地提升了与AWS服务交互时的安全性和有效性。 GitHub - okigan/awscurl: curl-like acc…

初识MySQL

文章目录 1.数据库2.查看数据库3.创建数据库4.字符集编码和排序规则6.修改数据库7.删除数据库 1.数据库 MySQL是一款使用率高且免费的数据库&#xff08;使用率仅仅低于Oracle&#xff09; 关系数据库和 NoSQL 数据库管理系统知识库(DB-Engines Ranking -) (此图数据于2025-1…

flutter_学习记录_00_环境搭建

1.参考文档 Mac端Flutter的环境配置看这一篇就够了 flutter的中文官方文档 2. 本人环境搭建的背景 本人的电脑的是Mac的&#xff0c;iOS开发&#xff0c;所以iOS开发环境本身是可用的&#xff1b;外加Mac电脑本身就会配置Java的环境。所以&#xff0c;后面剩下的就是&#x…

[b01lers2020]Life on Mars1

打开题目页面如下 看了旁边的链接&#xff0c;也没有什么注入点&#xff0c;是正常的科普 利用burp suite抓包&#xff0c;发现传参 访问一下 http://5edaec92-dd87-4fec-b0e3-501ff24d3650.node5.buuoj.cn:81/query?searchtharsis_rise 接下来进行sql注入 方法一&#xf…

【PyTorch】3.张量类型转换

个人主页&#xff1a;Icomi 在深度学习蓬勃发展的当下&#xff0c;PyTorch 是不可或缺的工具。它作为强大的深度学习框架&#xff0c;为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术&#xff0c;能够处理复杂的数据模式。通过 PyTorch&#xff0…

机位:解锁摄影视角的多维度密码

目录 一、机位的构成要素 &#xff08;一&#xff09;高度维度 &#xff08;二&#xff09;角度维度 &#xff08;三&#xff09;距离维度 二、移动机位的魅力 &#xff08;一&#xff09;推镜头 &#xff08;二&#xff09;拉镜头 &#xff08;三&#xff09;摇镜头 …

【例51.3】 平移数据

题目描述 将a数组中第一个元素移到数组末尾,其余数据依次往前平移一个位置。 输入 第一行为数组a的元素个数&#xff1b; 第二行为n个小于1000的正整数。 输出 平移后的数组元素&#xff0c;每个数用一个空格隔开。 样例输入 复制 10 1 2 3 4 5 6 7 8 9 10 样例输出 复…

【Project】CupFox电影网站数据爬取分析与可视化

数据采集清洗与数据存储流程如下图所示。 数据分析与数据可视化流程设计如下 1.使用pymongo从数据库中查询所需的数据。对数据进行处理和分析&#xff0c;进行统计、分类、聚合等操作&#xff0c;提取关键指标和洞察。分析结果可以通过编写Python代码进一步优化、筛选和整理&a…

gradle创建springboot单项目和多模块项目

文章目录 gradle创建springboot项目gradle多模块项目创建 gradle创建springboot项目 适用IDEA很简单&#xff0c;如下图 gradle多模块项目创建 首选创建父项目&#xff0c;然后删除无用内容至下图 选择父项目目录&#xff0c;右键选择模块&#xff0c;创建子项目&#xff08…

数据库的JOIN连接查询算法

文章目录 3.2 Join 算法优化3.1.2 Nested Loop Join&#xff08;NLJ&#xff09;3.1.3 Block Nested Loop Join&#xff08;BNLJ&#xff09;3.1.4 Index Nested Loop Join&#xff08;INLJ&#xff09;3.1.5 Sort Merge Join&#xff08;SMJ&#xff09;3.1.6 Hash Join 3.2 J…