Flink - sink算子

水善利万物而不争,处众人之所恶,故几于道💦

文章目录

  1. Kafka_Sink
  2. Kafka_Sink - 自定义序列化器
  3. Redis_Sink_String
  4. Redis_Sink_list
  5. Redis_Sink_set
  6. Redis_Sink_hash
  7. 有界流数据写入到ES
  8. 无界流数据写入到ES
  9. 自定义sink - mysql_Sink
  10. Jdbc_Sink

官方文档 - Flink1.13

在这里插入图片描述


1. Kafka_Sink

addSink(new FlinkKafkaProducer< String>(kafka_address,topic,序列化器)

要先添加依赖:

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka_2.12</artifactId><version>1.13.6</version>
</dependency>
public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);stream.keyBy(WaterSensor::getId).sum("vc").map(JSON::toJSONString).addSink(new FlinkKafkaProducer<String>("hadoop101:9092",  // kafaka地址"flink_sink_kafka",  //要写入的Kafkatopicnew SimpleStringSchema()  // 序列化器));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

2. Kafka_Sink - 自定义序列化器

  自定义序列化器,new FlinkKafkaProducer()的时候,选择四个参数的构造方法,然后使用new KafkaSerializationSchema序列化器。然后重写serialize方法

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);Properties sinkConfig = new Properties();sinkConfig.setProperty("bootstrap.servers","hadoop101:9092");stream.keyBy(WaterSensor::getId).sum("vc").addSink(new FlinkKafkaProducer<WaterSensor>("defaultTopic",  // 默认发往的topic ,一般用不上new KafkaSerializationSchema<WaterSensor>() {  // 自定义的序列化器@Overridepublic ProducerRecord<byte[], byte[]> serialize(WaterSensor waterSensor,@Nullable Long aLong) {String s = JSON.toJSONString(waterSensor);return new ProducerRecord<>("flink_sink_kafka",s.getBytes(StandardCharsets.UTF_8));}},sinkConfig,  // Kafka的配置FlinkKafkaProducer.Semantic.AT_LEAST_ONCE  // 一致性语义:现在只能传入至少一次));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

3. Redis_Sink_String

addSink(new RedisSink<>(config, new RedisMapper< WaterSensor>() {}

写到String结构里面

添加依赖:

<dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.83</version>
</dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-redis_2.11</artifactId><version>1.1.5</version>
</dependency>
public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");/*
往redis里面写字符串,string   命令提示符用set
假设写的key是id,value是整个json格式的字符串
key         value
sensor_1    json格式字符串*/// new一个单机版的配置FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder().setHost("hadoop101").setPort(6379).setMaxTotal(100)  //最大连接数量.setMaxIdle(10)  // 连接池里面的最大空闲.setMinIdle(2)   // 连接池里面的最小空闲.setTimeout(10*1000)  // 超时时间.build();// 写出到redis中result.addSink(new RedisSink<>(config, new RedisMapper<WaterSensor>() {// 返回命令描述符:往不同的数据结构写数据用的方法不一样@Overridepublic RedisCommandDescription getCommandDescription() {// 写入到字符串,用setreturn new RedisCommandDescription(RedisCommand.SET);}@Overridepublic String getKeyFromData(WaterSensor waterSensor) {return waterSensor.getId();}@Overridepublic String getValueFromData(WaterSensor waterSensor) {return JSON.toJSONString(waterSensor);}}));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

4. Redis_Sink_list

addSink(new RedisSink<>(config, new RedisMapper< WaterSensor>() {}

写到 list 结构里面

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");// key是id,value是处理后的json格式字符串FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder().setHost("hadoop101").setPort(6379).setMaxTotal(100)  //最大连接数量.setMaxIdle(10)  // 连接池里面的最大空闲.setMinIdle(2)   // 连接池里面的最小空闲.setTimeout(10*1000)  // 超时时间.build();result.addSink(new RedisSink<>(config, new RedisMapper<WaterSensor>() {@Overridepublic RedisCommandDescription getCommandDescription() {// 写入listreturn new RedisCommandDescription(RedisCommand.RPUSH);}@Overridepublic String getKeyFromData(WaterSensor waterSensor) {return waterSensor.getId();}@Overridepublic String getValueFromData(WaterSensor waterSensor) {return JSON.toJSONString(waterSensor);}}));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

5. Redis_Sink_set

addSink(new RedisSink<>(config, new RedisMapper< WaterSensor>() {}

写到 set 结构里面

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder().setHost("hadoop101").setPort(6379).setMaxTotal(100).setMaxIdle(10).setMinIdle(2).setTimeout(10*1000).build();result.addSink(new RedisSink<>(config, new RedisMapper<WaterSensor>() {@Overridepublic RedisCommandDescription getCommandDescription() {// 数据写入set集合return new RedisCommandDescription(RedisCommand.SADD);}@Overridepublic String getKeyFromData(WaterSensor waterSensor) {return waterSensor.getId();}@Overridepublic String getValueFromData(WaterSensor waterSensor) {return JSON.toJSONString(waterSensor);}}));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

6. Redis_Sink_hash

addSink(new RedisSink<>(config, new RedisMapper< WaterSensor>() {}

写到 hash结构里面

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder().setHost("hadoop101").setPort(6379).setMaxTotal(100).setMaxIdle(10).setMinIdle(2).setTimeout(10*1000).build();result.addSink(new RedisSink<>(config, new RedisMapper<WaterSensor>() {@Overridepublic RedisCommandDescription getCommandDescription() {// 数据写入hashreturn new RedisCommandDescription(RedisCommand.HSET,"a");}@Overridepublic String getKeyFromData(WaterSensor waterSensor) {return waterSensor.getId();}@Overridepublic String getValueFromData(WaterSensor waterSensor) {return JSON.toJSONString(waterSensor);}}));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

7. 有界流数据写入到ES中

new ElasticsearchSink.Builder()

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");List<HttpHost> hosts = Arrays.asList(new HttpHost("hadoop101", 9200),new HttpHost("hadoop102", 9200),new HttpHost("hadoop103", 9200));ElasticsearchSink.Builder<WaterSensor> builder = new ElasticsearchSink.Builder<WaterSensor>(hosts,new ElasticsearchSinkFunction<WaterSensor>() {@Overridepublic void process(WaterSensor element,  // 需要写出的元素RuntimeContext runtimeContext, // 运行时上下文   不是context上下文对象RequestIndexer requestIndexer) {  // 把要写出的数据,封装到RequestIndexer里面String msg = JSON.toJSONString(element);IndexRequest ir = Requests.indexRequest("sensor").type("_doc")  // 定义type的时候, 不能下划线开头. _doc是唯一的特殊情况.id(element.getId())  // 定义每条数据的id. 如果不指定id, 会随机分配一个id. id重复的时候会更新数据.source(msg, XContentType.JSON);requestIndexer.add(ir);  // 把ir存入到indexer, 就会自动的写入到es中}});result.addSink(builder.build());try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

8. 无界流数据写入到ES

  和有界差不多 ,只不过把数据源换成socket,然后因为无界流,它高效不是你来一条就刷出去,所以设置刷新时间、大小、条数,才能看到结果。
public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);SingleOutputStreamOperator<WaterSensor> result = env.socketTextStream("hadoop101",9999).map(line->{String[] data = line.split(",");return new WaterSensor(data[0],Long.valueOf(data[1]),Integer.valueOf(data[2]));}).keyBy(WaterSensor::getId).sum("vc");List<HttpHost> hosts = Arrays.asList(new HttpHost("hadoop101", 9200),new HttpHost("hadoop102", 9200),new HttpHost("hadoop103", 9200));ElasticsearchSink.Builder<WaterSensor> builder = new ElasticsearchSink.Builder<WaterSensor>(hosts,new ElasticsearchSinkFunction<WaterSensor>() {@Overridepublic void process(WaterSensor element,  // 需要写出的元素RuntimeContext runtimeContext, // 运行时上下文   不是context上下文对象RequestIndexer requestIndexer) {  // 把要写出的数据,封装到RequestIndexer里面String msg = JSON.toJSONString(element);IndexRequest ir = Requests.indexRequest("sensor").type("_doc")  // 定义type的时候, 不能下划线开头. _doc是唯一的特殊情况.id(element.getId())  // 定义每条数据的id. 如果不指定id, 会随机分配一个id. id重复的时候会更新数据.source(msg, XContentType.JSON);requestIndexer.add(ir);  // 把ir存入到indexer, 就会自动的写入到es中}});// 自动刷新时间builder.setBulkFlushInterval(2000);  // 默认不会根据时间自动刷新builder.setBulkFlushMaxSizeMb(1024);  // 当批次中的数据大于等于这个值刷新builder.setBulkFlushMaxActions(2);   // 每来多少条数据刷新一次// 这三个是或的关系,只要有一个满足就会刷新result.addSink(builder.build());try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

9. 自定义sink - mysql_Sink

  需要写一个类,实现RichSinkFunction,然后实现invoke方法。这里因为是写MySQL所以需要建立连接,那就用Rich版本。

  记得导入MySQL依赖

public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port", 1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");result.addSink(new MySqlSink());try {env.execute();} catch (Exception e) {e.printStackTrace();}}public static class MySqlSink extends RichSinkFunction<WaterSensor> {private Connection connection;@Overridepublic void open(Configuration parameters) throws Exception {Class.forName("com.mysql.cj.jdbc.Driver");connection = DriverManager.getConnection("jdbc:mysql://hadoop101:3306/test?useSSL=false", "root", "123456");}@Overridepublic void close() throws Exception {if (connection!=null){connection.close();}}// 调用:每来一条元素,这个方法执行一次@Overridepublic void invoke(WaterSensor value, Context context) throws Exception {// jdbc的方式想MySQL写数据
//            String sql = "insert into sensor(id,ts,vc)values(?,?,?)";//如果主键不重复就新增,主键重复就更新
//            String sql = "insert into sensor(id,ts,vc)values(?,?,?) duplicate key update vc=?";String sql = "replace into sensor(id,ts,vc)values(?,?,?)";// 1. 得到预处理语句PreparedStatement ps = connection.prepareStatement(sql);// 2. 给sql中的占位符进行赋值ps.setString(1,value.getId());ps.setLong(2,value.getTs());ps.setInt(3,value.getVc());
//            ps.setInt(4,value.getVc());// 3. 执行ps.execute();// 4. 提交
//            connection.commit();  MySQL默认自动提交,所以这个地方不用调用// 5. 关闭预处理ps.close();}
}

运行结果:
在这里插入图片描述

10. Jdbc_Sink

addSink(JdbcSink.sink(sql,JdbcStatementBuilder,执行参数,连接参数)

  对于jdbc数据库,我们其实没必要自定义,因为官方给我们了一个JDBC Sink -> 官方JDBC Sink 传送门

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc_2.11</artifactId><version>1.13.6</version>
</dependency>
public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(1);ArrayList<WaterSensor> waterSensors = new ArrayList<>();waterSensors.add(new WaterSensor("sensor_1", 1607527992000L, 20));waterSensors.add(new WaterSensor("sensor_1", 1607527994000L, 50));waterSensors.add(new WaterSensor("sensor_1", 1607527996000L, 50));waterSensors.add(new WaterSensor("sensor_2", 1607527993000L, 10));waterSensors.add(new WaterSensor("sensor_2", 1607527995000L, 30));DataStreamSource<WaterSensor> stream = env.fromCollection(waterSensors);SingleOutputStreamOperator<WaterSensor> result = stream.keyBy(WaterSensor::getId).sum("vc");result.addSink(JdbcSink.sink("replace into sensor(id,ts,vc)values(?,?,?)",new JdbcStatementBuilder<WaterSensor>() {@Overridepublic void accept(PreparedStatement ps,WaterSensor waterSensor) throws SQLException {// 只做一件事:给占位符赋值ps.setString(1,waterSensor.getId());ps.setLong(2,waterSensor.getTs());ps.setInt(3,waterSensor.getVc());}},new JdbcExecutionOptions.Builder()  //设置执行参数.withBatchSize(1024)   // 刷新大小上限.withBatchIntervalMs(2000) //刷新间隔.withMaxRetries(3)  // 重试次数.build(),new JdbcConnectionOptions.JdbcConnectionOptionsBuilder().withDriverName("com.mysql.cj.jdbc.Driver").withUrl("jdbc:mysql://hadoop101:3306/test?useSSL=false").withUsername("root").withPassword("123456").build()));try {env.execute();} catch (Exception e) {e.printStackTrace();}
}

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/76232.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python批量查字典和爬取双语例句

最近&#xff0c;有网友反映&#xff0c;我的批量查字典工具换到其它的网站就不好用了。对此&#xff0c;我想说的是&#xff0c;互联网包罗万象&#xff0c;网站的各种设置也有所不同&#xff0c;并不是所有的在线字典都可以用Python爬取的。事实上&#xff0c;很多网站为了防…

iphone备份用什么软件?好用的苹果数据备份工具推荐!

众所周知&#xff0c;如果要将iPhone的数据跟电脑进行传输备份的话&#xff0c;我们需要用到iTunes这个pc工具。但是对于iTunes&#xff0c;不少人都反映这个软件比较难用&#xff0c;用不习惯。于是&#xff0c;顺应时代命运的iPhone备份同步工具就出现了。那iphone备份用什么…

AirLink 101 Wireless N 150 PCI Adapter驱动和管理软件

从光盘里拷出来的&#xff0c;界面比较复古&#xff0c;实际功能聊胜于无 链接&#xff1a;https://pan.baidu.com/s/1clUcp7QsF8QMWdGoZkc_dQ?pwdmkra 提取码&#xff1a;mkra

抖音mcn的概念是什么?申请需要什么条件?

MCN&#xff0c;即多渠道网络&#xff0c;是一种服务于视频创作者的组织形式。抖音MCN则特指在抖音平台上运营的MCN。早在2015年&#xff0c;抖音作为字节跳动旗下的一款短视频应用出现&#xff0c;它通过凭借其“随便看看”的特性&#xff0c;收获了大量的用户和创作者。为了让…

进程与线程、线程创建、线程周期、多线程安全和线程池(ThreadPoolExecutor)

目录 进程与线程线程和进程的区别是什么&#xff1f;线程分两种&#xff1a;用户线程和守护线程线程创建四种方式run()和start()方法区别&#xff1a;为什么调用 start() 方法时会执行 run() 方法&#xff0c;为什么不能直接调用 run() 方法&#xff1f;Runnable接口和Callable…

27 使用Arrays.asList生成的集合无法使用add、addAll方法及解决方法。

27.1 原因 使用 Array.asList方法生成的ArrayList继承的是AbstractList抽象类 &#xff0c;如下图所示。 AbstractList又继承了AbstractCollection抽象类&#xff0c;实现了List接口的方法&#xff0c;如下图所示。 如下图所示。可以发现&#xff0c; AbstractionCollection实现…

05 - ArrayList还是LinkedList?使用不当性能差千倍

集合作为一种存储数据的容器&#xff0c;是我们日常开发中使用最频繁的对象类型之一。JDK 为开发者提供了一系列的集合类型&#xff0c;这些集合类型使用不同的数据结构来实现。因此&#xff0c;不同的集合类型&#xff0c;使用场景也不同。 很多同学在面试的时候&#xff0c;…

Qt Creator 11 开放源码集成开发环境新增集成终端和 GitHub Copilot 支持

导读Qt 项目今天发布了 Qt Creator 11&#xff0c;这是一款开源、免费、跨平台 IDE&#xff08;集成开发环境&#xff09;软件的最新稳定版本&#xff0c;适用于 GNU/Linux、macOS 和 Windows 平台。 Qt Creator 11 的亮点包括支持标签、多外壳、颜色和字体的集成终端模拟器&am…

MobPush iOS SDK iOS实时活动

开发工具&#xff1a;Xcode 功能需要: SwiftUI实现UI页面&#xff0c;iOS16.1以上系统使用 功能使用: 需应用为启动状态 功能说明 iOS16.1 系统支持实时活动功能&#xff0c;可以在锁定屏幕上实时获知各种事情的进展&#xff0c;MobPushSDK iOS 4.0.3版本已完成适配&#xf…

word转pdf两种方式(免费+收费)

一、免费方式 优点&#xff1a;1、免费&#xff1b;2、在众多免费中挑选出的转换效果相对较好&#xff0c;并且不用像openOffice那样安装服务 缺点&#xff1a;1、对字体支持没有很好&#xff0c;需要安装字体库或者使用宋体&#xff08;对宋体支持很好&#xff09;2、对于使…

剑指Offer05.替换空格

剑指Offer05.替换空格 目录 剑指Offer05.替换空格题目描述解法一&#xff1a;遍历添加解法二&#xff1a;原地修改 题目描述 请实现一个函数&#xff0c;把字符串s中的每个空格都替换成“%20”。 解法一&#xff1a;遍历添加 由于每次替换都要把一个空格字符变成三个字符&a…

04 Ubuntu中的中文输入法的安装

在Ubuntu22.04这种版本相对较高的系统中安装中文输入法&#xff0c;一般推荐使用fctix5&#xff0c;相比于其他的输入法&#xff0c;这款输入法的推荐词要好得多&#xff0c;而且不会像ibus一样莫名其妙地失灵。 首先感谢文章《滑动验证页面》&#xff0c;我是根据这篇文章的教…

uniapp自定义头部导航栏

有时我们需要一些特殊的头部导航栏页面&#xff0c;取消传统的导航栏&#xff0c;来增加页面的美观度。 下面我就教大家如何配置&#xff1a; 一、效果图 二、实现 首先在uniapp中打开pages.json配置文件&#xff0c;在单个路由配置style里面设置导航栏样式​​​​​​nav…

2023数字生态大会召开,长虹佳华再获3项大奖

近日&#xff0c;2023数字生态大会在北京隆重召开。长虹佳华勇夺“2023数字生态云计算服务卓越企业”、“2023数字生态元宇宙十强”和“数字生态增值分销商十强”三项大奖&#xff1b;还同时入选 “智慧教育十佳案例” 和 “智能制造十佳案例”。 长虹佳华是国企控股的香港上市…

Zookeeper

目录 一.Zookeeper 定义 二.Zookeeper 工作机制 三.Zookeeper 特点 四.Zookeeper 数据结构 五.Zookeeper 应用场景 六.Zookeeper 选举机制 当ZooKeeper 集群中的一台服务器出现以下两种情况之一时&#xff0c;就会开始进入Leader选举&#xff1a; 而当一台机器进入…

1312. 序列统计(隔板法,组合数,转化,Lucas)

题目链接&#xff1a;https://www.acwing.com/problem/content/1314/ &#xff0c; Code #include <cstring> #include <iostream> #include <algorithm>using namespace std;typedef long long LL;const int p 1000003;int qmi(int a, int k) {int res 1…

了解垃圾回收算法

点击下方关注我&#xff0c;然后右上角点击...“设为星标”&#xff0c;就能第一时间收到更新推送啦~~~ 垃圾回收&#xff08;Garbage Collect&#xff09;是Java语言中的一种自动内存管理机制&#xff0c;用于自动回收不再使用的对象所占用的内存空间。Java虚拟机会自动追踪和…

url重定向

不安全的url跳转 不安全的url跳转问题可能发生在一切执行了url地址跳转的地方。 如果后端采用了前端传进来的(可能是用户传参,或者之前预埋在前端页面的url地址)参数作为了跳转的目的地,而又没有做判断的话 就可能发生"跳错对象"的问题。 url跳转比较直接的危害是…

Jenkins触发器时间、次数设定

触发器触发条件介绍 触发器触发条件公式&#xff1a;由5颗星组成 * * * * * 分别代表&#xff1a;分钟(0-59) 小时(0-23) 日期(1-31) 月份(1-12) 星期(0-6) 企业项目中常用场景介绍 场景1&#xff1a;接口脚本部分测试通过&#xff0c;部分还在进行&#xff0c;回归测试脚本执行…

QT属性系统

1 介绍 Qt中的属性系统是用于为对象添加自定义属性并管理这些属性的一种机制。它允许开发者在不修改类定义的情况下&#xff0c;动态地为Qt对象添加新的属性&#xff0c;并且能够对这些属性进行读取、设置和监听。 属性系统在Qt中是通过Q_PROPERTY宏和QObject的元对象系统来实现…