2023华数杯数学建模C题母亲对婴儿影响论文完整讲解

大家好呀,从昨天发布赛题一直到现在,总算完成了华数杯数学建模C题完整的成品论文。

本论文可以保证原创,保证高质量。绝不是随便引用一大堆模型和代码复制粘贴进来完全没有应用糊弄人的垃圾半成品论文。

C题论文共72页,一些修改说明7页,正文54页,附录11页。
这道题出得还算不错,逻辑非常连贯。从昨天通宵到现在,我尽量还是想把这道题工作量堆上去,第一问我把婴儿四个指标分成了定类定量两类,分别做差异性分析和相关性分析,其实都是为了看p值。第二问无脑随机森林分类,给出权重后,测试集精度我换了很多模型改了很多参数,最终合格。第三问就是给治疗方案然后按照第二问分类预测看能不能达到中等安静,这个确定完治疗方式后一直试方案无脑预测就完事了。第四问先是RSR算得分和分档,之后就是随机森林回归了,实际预测一下得分即可。最后一问则是基于第四问的回归模型一直试各种方案得分看能不能达到优。
之所以篇幅这么长,是因为:
我论文很多的篇幅需要用来解释我为什么要这么做,基本就是手把手教你怎么做,并且我还要照顾每个人的水平,所有会有些地方需要写得很繁琐,一些中间过程展现得事无巨细,并且表格很多,你们自己放到附录即可

实在精力有限,没力气打太多字做文字版讲解了,可能讲得不够详细,可以看我视频讲解哈:

2023华数杯数学建模C题母亲对婴儿影响手把手保姆级教学!_哔哩哔哩_bilibili

本文很长,大家一口气看不完别忘了点赞收藏一下防止迷路哈。

OK,这里是我的

目录:

摘要:

问题一:

1. 许多研究表明,母亲的身体指标和心理指标对婴儿的行为特征和睡眠质量有影响,请问是否存在这样的规律,根据附件中的数据对此进行研究。

婴儿的指标我分成了两类,一类是定类的,一类是定量的。定类的做差异性分析,定量的相关性分析,但最终本质上都是看显著性p值大小,如果存在显著差异,那么就说明存在影响。

问题二:

2. 婴儿行为问卷是一个用于评估婴儿行为特征的量表,其中包含了一些关 于婴儿情绪和反应的问题。我们将婴儿的行为特征分为三种类型:安静型、中等 型、矛盾型。请你建立婴儿的行为特征与母亲的身体指标与心理指标的关系模型。 数据表中最后有20组(编号391-410号)婴儿的行为特征信息被删除,请你判断他们是属于什么类型。

做一个分类预测的机器学习模型即可:

问题三:

3. 对母亲焦虑的干预有助于提高母亲的心理健康水平,还可以改善母婴交 互质量,促进婴儿的认知、情感和社交发展。CBTS、EPDS、HADS的治疗费用相对 于患病程度的变化率均与治疗费用呈正比,经调研,给出了两个分数对应的治疗 费用,详见表1。现有一个行为特征为矛盾型的婴儿,编号为238。请你建立模型,分析最少需要花费多少治疗费用,能够使婴儿的行为特征从矛盾型变为中等型?若要使其行为特征变为安静型,治疗方案需要如何调整?

给出各种治疗方案,按照问题二的分类预测模型,看一下到底什么时候能降到中等和安静就可以。

而对于治疗费用到底如何计算,又该怎么定义治疗,这些大家可以看文末的视频讲解,就不多赘述了。

第四问:

4. 婴儿的睡眠质量指标包含整晚睡眠时间、睡醒次数、入睡方式。请你对 婴儿的睡眠质量进行优、良、中、差四分类综合评判,并建立婴儿综合睡眠质量 与母亲的身体指标、心理指标的关联模型,预测最后20组(编号391-410号)婴儿的综合睡眠质量。

先做综合评价算得分并划分等级,之后做预测得分的机器学习模型就可以:

再放一点代码吧,注意只是随机森林的模板代码,不是我自己实际求解使用的哈:

function  [tree,discrete_dim] = train_C4_5(S, inc_node, Nu, discrete_dim)  % Classify using Quinlan's C4.5 algorithm  % Inputs:  %   training_patterns   - Train patterns 训练样本  每一列代表一个样本 每一行代表一个特征%   training_targets    - Train targets  1×训练样本个数 每个训练样本对应的判别值%   test_patterns       - Test  patterns 测试样本,每一列代表一个样本  %   inc_node            - Percentage of incorrectly assigned samples at a node  一个节点上未正确分配的样本的百分比%   inc_node为防止过拟合,表示样本数小于一定阈值结束递归,可设置为5-10%   注意inc_node设置太大的话会导致分类准确率下降,太小的话可能会导致过拟合  %  Nu is to determine whether the variable is discrete or continuous (the value is always set to 10)  %  Nu用于确定变量是离散还是连续(该值始终设置为10)%  这里用10作为一个阈值,如果某个特征的无重复的特征值的数目比这个阈值还小,就认为这个特征是离散的% Outputs  %   test_targets        - Predicted targets 1×测试样本个数 得到每个测试样本对应的判别值%   也就是输出所有测试样本最终的判别情况%NOTE: In this implementation it is assumed that a pattern vector with fewer than 10 unique values (the parameter Nu)  %is discrete, and will be treated as such. Other vectors will be treated as continuous  % 在该实现中,假设具有少于10个无重复值的特征向量(参数Nu)是离散的。 其他向量将被视为连续的train_patterns = S(:,1:end-1)';      train_targets = S(:,end)';   [Ni, M]     = size(train_patterns); %M是训练样本数,Ni是训练样本维数,即是特征数目inc_node    = inc_node*M/100;  % 5*训练样本数目/100if isempty(discrete_dim)  %Find which of the input patterns are discrete, and discretisize the corresponding dimension on the test patterns  %查找哪些输入模式(特征)是离散的,并离散测试模式上的相应维discrete_dim = zeros(1,Ni); %用于记录每一个特征是否是离散特征,初始化都记为0,代表都是连续特征,%如果后面更改,则意味着是离散特征,这个值会更改为这个离散特征的无重复特征值的数目 for i = 1:Ni  %遍历每个特征Ub = unique(train_patterns(i,:));  %取每个特征的不重复的特征值构成的向量 Nb = length(Ub);    %得到无重复的特征值的数目if (Nb <= Nu)  %如果这个特征的无重复的特征值的数目比这个阈值还小,就认为这个特征是离散的  %This is a discrete pattern  discrete_dim(i) = Nb; %得到训练样本中,这个特征的无重复的特征值的数目 存放在discrete_dim(i)中,i表示第i个特征

第五问:

5.在问题三的基础上,若需要让238号婴儿的睡眠质量评级为优,请问问题 三的治疗策略是否需要调整?如何调整?

改换各种治疗方案算得分判断分级即可:

OK以上只是比较简略的图文版讲解,视频版讲解及完整成品可以点击下方我的个人卡片查看哈↓:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/76442.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iOS——Block two

Block 的实质究竟是什么呢&#xff1f;类型&#xff1f;变量&#xff1f;还是什么黑科技&#xff1f; Blocks 是 带有局部变量的匿名函数 Blocks 由 OC 转 C 源码方法 在项目中添加 blocks.m 文件&#xff0c;并写好 block 的相关代码。打开「终端」&#xff0c;执行 cd XX…

LNMP安装

目录 1、LNMP简述&#xff1a; 1.1、概述 1.2、LNMP是一个缩写词&#xff0c;及每个字母的含义 1.3、编译安装与yum安装差异 1.4、编译安装的优点 2、通过LNMP创建论坛 2.1、 安装nginx服务 2.1.1、关闭防火墙 2.1.2、创建运行用户 2.1.3、 编译安装 2.1.4、 优化路…

前端JS实用操作符,一些骚操作✨

目录 0、!! 双重逻辑非操作符 &#x1f4da; 1、?? 操作符 空值合并/空判断 ✅ 2、?. 可选链运算符&#x1f50d; 3、?? 操作符 逻辑空值赋值运算符 &#x1f49a; 4、三元运算符 &#x1f4d7; 5、~~ 操作符 双位运算符 &#x1f528; 6、&&与 ||或 短…

【Autolayout自动布局介绍 Objective-C语言】

一、好,我们开始介绍Autolayout 1.什么事Autolayout 好,那么,接下来,我们介绍一下这个Autolayout Autolayout,就是“自动布局” 那么,自动布局,它就是专门用来做UI界面的 那么,UI界面,我们为了适应不同屏幕,要进行自动布局, 所以要使用Autolayout 这个Autolayou…

Open3D (C++) 计算矩阵的广义逆

目录 一、算法原理1、广义逆2、计算过程二、代码实现三、结果展示四、参考链接本文由CSDN点云侠原创,原文链接。爬虫网站自重,把自己当个人,爬些不完整的误导别人有意思吗???? 一、算法原理 1、广义逆 非方阵不存在逆,但是存在广义逆(伪逆)。对于一个矩阵

数据仓库设计理论

数据仓库设计理论 一、数据仓库基本概念 1.1、数据仓库介绍 数据仓库是一个用于集成、存储和分析大量结构化和非结构化数据的中心化数据存储系统。它旨在支持企业的决策制定和业务分析活动。 1.2、基本特征 主题导向&#xff1a;数据仓库围绕特定的主题或业务领域进行建模…

【网络基础实战之路】基于MGRE多点协议的实战详解

系列文章传送门&#xff1a; 【网络基础实战之路】设计网络划分的实战详解 【网络基础实战之路】一文弄懂TCP的三次握手与四次断开 【网络基础实战之路】基于MGRE多点协议的实战详解 【网络基础实战之路】基于OSPF协议建立两个MGRE网络的实验详解 PS&#xff1a;本要求基于…

记录一次Linux环境下遇到“段错误核心已转储”然后利用core文件解决问题的过程

参考Linux 下Coredump分析与配置 在做项目的时候&#xff0c;很容易遇到“段错误&#xff08;核心已转储&#xff09;”的问题。如果是语法错误还可以很快排查出来问题&#xff0c;但是碰到coredump就没办法直接找到问题&#xff0c;可以通过设置core文件来查找问题&#xff0…

About Multiple regression

ps:this article is not very strict,just some ml and mathematic basic knowledge.My english is poor too.So If this passage make you confuse and uncomfortable.Please give me a feedback in the comment :-D Prior to this(在此之前), we learned the concept of sin…

数据结构:单链表的实现(C语言)

个人主页 &#xff1a; 水月梦镜花 个人专栏 &#xff1a; 《C语言》 《数据结构》 文章目录 前言一、单链表实现思路和图解1.节点的定义(SListNode)2.申请一个节点(BuySListNode)3.单链表打印(SListPrint)4.单链表尾插(SListPushBack)5.单链表的头插(SListPushFront)6.单链表的…

vue2-v-show和v-if有什么区别,使用场景分别是什么?

1、v-show和v-if的共同点 在vue中&#xff0c;v-if和v-show的作用效果是相同的&#xff08;不含v-else&#xff09;&#xff0c;都能控制元素在页面是否显示&#xff0c;在用法上也相同。 当表达式为true的时候&#xff0c;都会占据页面的位置 当表达式为false的时候&#xff…

css3 hover border 流动效果

/* Hover 边线流动 */.hoverDrawLine {border: 0 !important;position: relative;border-radius: 5px;--border-color: #60daaa; } .hoverDrawLine::before, .hoverDrawLine::after {box-sizing: border-box;content: ;position: absolute;border: 2px solid transparent;borde…

TCP的三次握手和四次挥手······详解

1、三次握手 三次握手是建立连接的过程 如图大致为三次握手的流程图&#xff1a; 当客户端对服务端发起连接时&#xff0c;会先发一个包连接请求数据&#xff0c;去询问能否建立连接&#xff0c;该数据包称为 “SYN”包 然后&#xff0c;如果对方同意连接&#xff0c;那么…

九耶|阁瑞钛伦特 Java中,锁的实现方式

在Java中&#xff0c;锁的实现方式有以下几种&#xff1a; 1. Synchronized关键字&#xff1a;使用synchronized关键字可以创建一个互斥锁&#xff0c;它可以保证同一时刻只有一个线程可以进入被synchronized关键字修饰的代码块或方法。 2. ReentrantLock类&#xff1a;Reentr…

二叉树进阶版(C)

文章目录 1.树1.1概念1.2相关定义1.3 表示&#xff08;左孩子右兄弟&#xff09; 2.二叉树2.1概念2.2特殊的二叉树1. 满二叉树&#xff1a;2. 完全二叉树&#xff1a; 2.3二叉树的性质2.4练习 3.二叉树的存储结构1. 顺序存储2. 链式存储 4.完全二叉树的代码实现4.1堆的介绍1.堆…

【雕爷学编程】Arduino动手做(184)---快餐盒盖,极低成本搭建机器人实验平台3

吃完快餐粥&#xff0c;除了粥的味道不错之外&#xff0c;我对个快餐盒的圆盖子产生了兴趣&#xff0c;能否做个极低成本的简易机器人呢&#xff1f;也许只需要二十元左右 知识点&#xff1a;轮子&#xff08;wheel&#xff09; 中国词语。是用不同材料制成的圆形滚动物体。简…

Qt展示动态波形

Qt展示动态波形 需求描述成品展示实现难点Qt多线程 需求描述 接入串口&#xff0c;配置串口顺序进行接收数据&#xff1b;数据分成两个串口分别传入&#xff0c;使用多线程并发接入&#xff1b;时域数据有两个通道&#xff08;I&#xff0c;Q&#xff09;&#xff0c;分别以实…

zookeeper入门学习

zookeeper入门学习 zookeeper应用场景 分布式协调组件 客户端第一次请求发给服务器2&#xff0c;将flag值修改为false&#xff0c;第二次请求被负载均衡到服务器1&#xff0c;访问到的flag也会是false 一旦有节点发生改变&#xff0c;就会通知所有监听方改变自己的值&#…

【C++】类和对象-多态

1.多态的基本语法 代码 #include <iostream> using namespace std; /******************************************/ class Animal { public://speak函数就是虚函数//函数前面加上virtual关键字&#xff0c;变成虚函数&#xff0c;//那么编译器在编译的时候就不能确定函数…

DevExpress WPF Tree List组件,让数据可视化程度更高!(二)

DevExpress WPF Tree List组件是一个功能齐全、数据感知的TreeView-ListView混合体&#xff0c;可以把数据信息显示为REE、GRID或两者的组合&#xff0c;在数据绑定或非绑定模式下&#xff0c;具有完整的数据编辑支持。 在上文中&#xff08;点击这里回顾DevExpress WPF Tree …