回归预测 | MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1
2
3
4
5
6
7

8
9
10
11
12

基本介绍

MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
1.MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.蛇群算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

模型描述

POA-CNN-LSTM鹈鹕算法是一种用于优化卷积长短期记忆神经网络(Convolutional Long Short-Term Memory, CNN-LSTM)的多输入单输出回归预测的算法。这个算法的名字中的"鹈鹕"可能是指作者或团队的名称,它们开发了这种算法并进行了相应的改进。
CNN-LSTM是一种融合了卷积神经网络(Convolutional Neural Network, CNN)和长短期记忆神经网络(Long Short-Term Memory, LSTM)的模型。它在时间序列数据上表现良好,能够捕捉输入数据中的时序依赖关系和空间特征。然而,CNN-LSTM模型的性能仍然可以通过算法的改进进行优化。POA-CNN-LSTM鹈鹕算法可能是基于对CNN-LSTM模型的改进和调整而开发的。通过调整CNN-LSTM模型中的超参数,如神经元数量、学习率、优化器类型等,来最大化模型的性能。这可以通过使用网格搜索或随机搜索等技术来完成。实际上,POA-CNN-LSTM鹈鹕算法的具体优化方法可能还涉及其他技术和改进。详细的算法细节和具体实现需要参考相关的文献或资料。

6

程序设计

  • 完整源码和数据获取方式1:私信博主回复POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络多输入单输出回归预测,同等价值程序兑换;
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络多输入单输出回归预测
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/78118.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Michael.W基于Foundry精读Openzeppelin第20期——EnumerableMap.sol

0. 版本 [openzeppelin]&#xff1a;v4.8.3&#xff0c;[forge-std]&#xff1a;v1.5.6 0.1 EnumerableMap.sol Github: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.3/contracts/utils/structs/EnumerableMap.sol EnumerableMap库提供了Bytes32ToB…

快速远程桌面控制公司电脑远程办公

文章目录 第一步第二步第三步 远程办公的概念很早就被提出来&#xff0c;但似乎并没有多少项目普及落实到实际应用层面&#xff0c;至少在前几年&#xff0c;远程办公距离我们仍然很遥远。但2019年末突如其来的疫情&#xff0c;着实打了大家一个措手不及。尽管国内最初的大面积…

新魔百和M301H_关于CW代工_JL(南传)代工_zn及sm代工区分及鸿蒙架构全网通卡刷包刷机教程

新魔百盒M301H_关于CW代工_JL(南传)代工_zn及sm代工区分及鸿蒙架构全网通卡刷包刷机教程 下载固件之前我们先区分下代工&#xff1a; 如盒子背面型号标签上带有ZN则视为兆能代工&#xff0c;如有CW或BYT则视为创维代工&#xff1b; 如有JL或南传则视为九联代工&#xff0c;ys…

机器学习---概述(一)

文章目录 1.人工智能、机器学习、深度学习2.机器学习的工作流程2.1 获取数据集2.2 数据基本处理2.3 特征工程2.3.1 特征提取2.3.2 特征预处理2.3.3 特征降维 2.4 机器学习2.5 模型评估 3.机器学习的算法分类3.1 监督学习3.1.1 回归问题3.1.2 分类问题 3.2 无监督学习3.3 半监督…

网络安全防火墙体验实验

网络拓扑 实验操作&#xff1a; 1、cloud配置 2、防火墙配置 [USG6000V1]int GigabitEthernet 0/0/0 [USG6000V1-GigabitEthernet0/0/0]ip add 192.168.200.100 24 打开防火墙的所有服务 [USG6000V1-GigabitEthernet0/0/0]service-manage all permit 3、进入图形化界面配置…

阿里云容器服务助力极氪荣获 FinOps 先锋实践者

作者&#xff1a;海迩 可信云评估是中国信息通信研究院下属的云计算服务和软件的专业评估体系&#xff0c;自 2013 年起历经十年发展&#xff0c;可信云服务评估体系已日臻成熟&#xff0c;成为政府支撑、行业规范、用户选型的重要参考。 2022 年 5 月国务院国资委制定印发《…

【周末闲谈】“深度学习”,人工智能也要学习?

个人主页&#xff1a;【&#x1f60a;个人主页】 系列专栏&#xff1a;【❤️周末闲谈】 系列目录 ✨第一周 二进制VS三进制 ✨第二周 文心一言&#xff0c;模仿还是超越&#xff1f; ✨第二周 畅想AR 文章目录 系列目录前言机器学习深度学习深度学习的三在种方法深度学习讲解…

Godot 4 源码分析 - Path2D与PathFollow2D

学习演示项目dodge_the_creeps&#xff0c;发现里面多了一个Path2D与PathFollow2D 研究GDScript代码发现&#xff0c;它主要用于随机生成Mob var mob_spawn_location get_node(^"MobPath/MobSpawnLocation")mob_spawn_location.progress randi()# Set the mobs dir…

RIP Bram Moolenaar

Grateful for your work on Vim and for the impact Vim has had on the world. Thank you for everything, Bram.

Kubespray-offline v2.21.0-1 下载 Kubespray v2.22.1 离线部署 kubernetes v1.25.6

文章目录 1. 目标2. 预备条件3. vcenter 创建虚拟机4. 系统初始化4.1 配置网卡4.2 配置主机名4.3 内核参数 5. 打快照6. 安装 git7. 配置科学8. 安装 docker9. 下载介质9.1 下载安装 docker 介质9.2 下载 kubespray-offline-ansible 介质9.3 下载 kubernetes 介质 10. 搬运介质…

浅析大数据时代下的视频技术发展趋势以及AI加持下视频场景应用

视频技术的发展可以追溯到19世纪初期的早期实验。到20世纪初期&#xff0c;电视技术的发明和普及促进了视频技术的进一步发展。 1&#xff09;数字化&#xff1a;数字化技术的发明和发展使得视频技术更加先进。数字电视信号具有更高的清晰度和更大的带宽&#xff0c;可以更快地…

8.15锁的优化

1.锁升级(锁膨胀) 无锁 -> 偏向锁 -> 轻量级锁 -> 重量级锁 偏向锁:不是真的加锁,而是做了一个标记,如果有别的线程来竞争才会真的加锁,如果没有别的线程竞争就不会加锁. 轻量级锁:一个线程占领锁资源后,另一个线程通过自旋的方式反复确认锁是否被是否(这个过程比较…

重零搭建SpringSecurity +JWT

1、前期工作&#xff08;创建父工程&#xff0c;导入依赖&#xff09; 2、创建启动类 3、测试项目&#xff0c;启动后访问8080端口、hello看有没有页面 4、引入springSecurity依赖&#xff08;重新启动&#xff0c;再访问/hello,会跳转到登录页面&#xff0c;用户名是 user,密码…

websocket

一、聊天室模式 0.效果图&#xff1a; 1.后端代码 1.1 导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId><exclusions><exclusion><groupId>org.s…

windows部署springboot项目 jar项目 (带日志监听和开机自起脚本)

windows部署springboot项目 jar项目 &#xff08;带日志监听&#xff09; 1.把项目打包成jar包&#xff0c;本例演示打包后的jar文件名为demo.jar ———————————————— 2.需要装好java环境&#xff0c;配置好JAVA_HOME&#xff0c;CLASSPATH&#xff0c;PATH等…

vue-baidu-map-3x 使用记录

在 Vue3 TypeScript 项目中&#xff0c;为了采用 标签组件 的方式&#xff0c;使用百度地图组件&#xff0c;冲浪发现了一个开源库 ovo&#xff0c;很方便&#xff01;喜欢的朋友记得帮 原作者 点下 star ~ vue-baidu-map-3xbaidu-map的vue3/vue2版本&#xff08;支持v2.0、v…

【笔记】第94期-冯永吉-《湖仓集一体关键技术解读》-大数据百家讲坛-厦大数据库实验室主办20221022

https://www.bilibili.com/video/BV1714y1j7AU/?spm_id_from333.337.search-card.all.click&vd_sourcefa36a95b3c3fa4f32dd400f8cabddeaf

【es6】Promise实现

友情链接 关于promise的介绍&#xff0c;请看此篇水文 本篇文章只是介绍实现promise以及promise常用方法。 正文 Promise使用 let promise new Promise((resolve,reject)>{resolve(success); //这里如果是reject(fail) }); promise.then((res)>{console.log(res); …

传染病学模型 | Python实现基于全球控制SIR模型分析Covid19爆发

效果一览 文章概述 传染病学模型 | Python实现基于全球控制SIR 模型分析Covid19爆发 源码设计 import jax.numpy as np import numpy as onpimport matplotlib.pyplot as plt

【MySQL系列】表约束的学习

「前言」文章内容大致是MySQL的表的约束。 「归属专栏」MySQL 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 一、MySQL表的约束1.1 空属性1.2 默认值&#xff08;default&#xff09;1.3 列描述&#xff08;comment&#xff09;1.4 zerofill1.5 主键&#xff08;primary ke…