python-opencv对极几何 StereoRectify

OpenCV如何正确使用stereoRectify函数

函数介绍

    用于双目相机的立体校正环节中,这里只谈谈这个函数怎么使用,参数具体指哪些

函数参数

    随便去网上一搜或者看官方手册就能得到参数信息,但是!!相对关系非常容易出错!!这里详细解释一下这些参数究竟怎么用
void stereoRectify(InputArray cameraMatrix1, InputArray distCoeffs1, InputArray cameraMatrix2,InputArray distCoeffs2, Size imageSize, InputArray R, InputArray T,OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags=CALIB_ZERO_DISPARITY, double alpha=-1, Size newImageSize=Size(), Rect* validPixROI1=0, Rect* validPixROI2=0 )
cameraMatrix1-第一个摄像机的摄像机矩阵,即左相机相机内参矩阵,矩阵第三行格式应该为 0 0 1
distCoeffs1-第一个摄像机的畸变向量
cameraMatrix2-第一个摄像机的摄像机矩阵,即右相机相机内参矩阵,矩阵第三行格式应该为 0 0 1
distCoeffs2-第二个摄像机的畸变向量
imageSize-图像大小
R- 相机之间的旋转矩阵,这里R的意义是:相机1通过变换R到达相机2的位姿
T-  左相机到右相机的平移矩阵
R1-输出矩阵,第一个摄像机的校正变换矩阵(旋转变换)
R2-输出矩阵,第二个摄像机的校正变换矩阵(旋转矩阵)
P1-输出矩阵,第一个摄像机在新坐标系下的投影矩阵
P2-输出矩阵,第二个摄像机在想坐标系下的投影矩阵
Q-4*4的深度差异映射矩阵
flags-可选的标志有两种零或者 CV_CALIB_ZERO_DISPARITY ,如果设置 CV_CALIB_ZERO_DISPARITY 的话,该函数会让两幅校正后的图像的主点有相同的像素坐标。否则该函数会水平或垂直的移动图像,以使得其有用的范围最大
alpha-拉伸参数。如果设置为负或忽略,将不进行拉伸。如果设置为0,那么校正后图像只有有效的部分会被显示(没有黑色的部分),如果设置为1,那么就会显示整个图像。设置为0~1之间的某个值,其效果也居于两者之间。
newImageSize-校正后的图像分辨率,默认为原分辨率大小。
validPixROI1-可选的输出参数,Rect型数据。其内部的所有像素都有效
validPixROI2-可选的输出参数,Rect型数据。其内部的所有像素都有效

opencv进行双目标定以及极线校正 python代码

双目标定

参考博客 OpenCV相机标定全过程
[OpenCV实战]38 基于OpenCV的相机标定
opencv立体标定函数 stereoCalibrate()

主要使用的函数

findChessboardCorners() #棋盘格角点检测
cornerSubPix() #亚像素检测
calibrateCamera() #单目标定 求解摄像机的内在参数和外在参数
stereoCalibrate() #双目标定 求解两个摄像头的内外参数矩阵,以及两个摄像头的位置关系R,T

代码

import cv2
import os
import numpy as npleftpath = 'images/left'
rightpath = 'images/right'
CHECKERBOARD = (11,12)  #棋盘格内角点数
square_size = (30,30)   #棋盘格大小,单位mm
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
imgpoints_l = []    #存放左图像坐标系下角点位置
imgpoints_r = []    #存放左图像坐标系下角点位置
objpoints = []   #存放世界坐标系下角点位置
objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32)
objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
objp[0,:,0] *= square_size[0]
objp[0,:,1] *= square_size[1]for ii in os.listdir(leftpath):img_l = cv2.imread(os.path.join(leftpath,ii))gray_l = cv2.cvtColor(img_l,cv2.COLOR_BGR2GRAY)img_r = cv2.imread(os.path.join(rightpath,ii))gray_r = cv2.cvtColor(img_r,cv2.COLOR_BGR2GRAY)ret_l, corners_l = cv2.findChessboardCorners(gray_l, CHECKERBOARD)   #检测棋盘格内角点ret_r, corners_r = cv2.findChessboardCorners(gray_r, CHECKERBOARD)if ret_l and ret_r:objpoints.append(objp)corners2_l = cv2.cornerSubPix(gray_l,corners_l,(11,11),(-1,-1),criteria) imgpoints_l.append(corners2_l)corners2_r = cv2.cornerSubPix(gray_r,corners_r,(11,11),(-1,-1),criteria)imgpoints_r.append(corners2_r)#img = cv2.drawChessboardCorners(img, CHECKERBOARD, corners2,ret)#cv2.imwrite('./ChessboardCornersimg.jpg', img)
ret, mtx_l, dist_l, rvecs_l, tvecs_l = cv2.calibrateCamera(objpoints, imgpoints_l, gray_l.shape[::-1],None,None)  #先分别做单目标定
ret, mtx_r, dist_r, rvecs_r, tvecs_r = cv2.calibrateCamera(objpoints, imgpoints_r, gray_r.shape[::-1],None,None)retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F = \cv2.stereoCalibrate(objpoints, imgpoints_l, imgpoints_r, mtx_l, dist_l, mtx_r, dist_r, gray_l.shape[::-1])   #再做双目标定print("stereoCalibrate : \n")
print("Camera matrix left : \n")
print(cameraMatrix1)
print("distCoeffs left  : \n")
print(distCoeffs1)
print("cameraMatrix left : \n")
print(cameraMatrix2)
print("distCoeffs left : \n")
print(distCoeffs2)
print("R : \n")
print(R)
print("T : \n")
print(T)
print("E : \n")
print(E)
print("F : \n")
print(F)

将打印的结果保存到标定文件中即可

极线校正
参考博客 机器视觉学习笔记(8)——基于OpenCV的Bouguet立体校正
小白视角之Bouguet双目立体校正原理

主要使用的函数

stereoRectify() #计算旋转矩阵和投影矩阵
initUndistortRectifyMap() #计算校正查找映射表
remap() #重映射

代码

import cv2
import numpy as npdef cat2images(limg, rimg):HEIGHT = limg.shape[0]WIDTH = limg.shape[1]imgcat = np.zeros((HEIGHT, WIDTH*2+20,3))imgcat[:,:WIDTH,:] = limgimgcat[:,-WIDTH:,:] = rimgfor i in range(int(HEIGHT / 32)):imgcat[i*32,:,:] = 255 return imgcatleft_image = cv2.imread("images/left/268.jpg")
right_image = cv2.imread("images/right/268.jpg")imgcat_source = cat2images(left_image,right_image)
HEIGHT = left_image.shape[0]
WIDTH = left_image.shape[1]
cv2.imwrite('imgcat_source.jpg', imgcat_source )camera_matrix0 = np.array([[1.30991855e+03, 0.00000000e+00, 5.90463086e+02],[0.00000000e+00, 1.31136722e+03, 3.33464608e+02],[0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) .reshape((3,3)) #即上文标定得到的 cameraMatrix1distortion0 = np.array([-4.88890701e-01,  3.27964225e-01, -2.72130825e-04,  1.28030208e-03, -1.85964828e-01]) #即上文标定得到的 distCoeffs1camera_matrix1 = np.array([[1.30057467e+03, 0.00000000e+00, 6.28445749e+02],[0.00000000e+00, 1.30026325e+03, 3.90475091e+02],[0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) .reshape((3,3)) #即上文标定得到的 cameraMatrix2
distortion1 = np.array([-4.95938411e-01,  2.70207629e-01,  1.81014753e-04, -4.58891345e-04, 4.41327829e-01]) #即上文标定得到的 distCoeffs2R = np.array([[ 0.99989348,  0.01340678, -0.00576869], [-0.01338004,  0.99989967,  0.00465071], [ 0.00583046, -0.00457303,  0.99997255]]) #即上文标定得到的 R
T = np.array([-244.28272039, 3.84124178, 2.0963191]) #即上文标定得到的T(R_l, R_r, P_l, P_r, Q, validPixROI1, validPixROI2) = \cv2.stereoRectify(camera_matrix0, distortion0, camera_matrix1, distortion1, np.array([WIDTH,HEIGHT]), R, T) #计算旋转矩阵和投影矩阵(map1, map2) = \cv2.initUndistortRectifyMap(camera_matrix0, distortion0, R_l, P_l, np.array([WIDTH,HEIGHT]), cv2.CV_32FC1) #计算校正查找映射表rect_left_image = cv2.remap(left_image, map1, map2, cv2.INTER_CUBIC) #重映射#左右图需要分别计算校正查找映射表以及重映射
(map1, map2) = \cv2.initUndistortRectifyMap(camera_matrix1, distortion1, R_r, P_r, np.array([WIDTH,HEIGHT]), cv2.CV_32FC1)rect_right_image = cv2.remap(right_image, map1, map2, cv2.INTER_CUBIC)imgcat_out = cat2images(rect_left_image,rect_right_image)
cv2.imwrite('imgcat_out.jpg', imgcat_out)

效果图
校正前
左图
在这里插入图片描述
右图
在这里插入图片描述
校正后
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/79223.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】事务的多版本并发控制(MVCC)

目录 一、数据库并发的三种场景二、MVCC2.1 三个记录隐藏字段2.2 undo log(撤销日志)2.3 模拟MVCC2.3.1 模拟更新(update)2.3.1 模拟删除(delete)2.3.1 模拟插入(insert)2.3.1 模拟查…

maven中常见问题

文章目录 一、配置项提示二、父子打包三、打包之后不显示target四、自定义打包之后的jar包名称五、整个项目打包5.1、父项目管理插件和微服务打包 一、配置项提示 SpringBoot中提示错误信息 表示的是SpringBoot中的注释提示没有配置!那么可以来使用一下springboot官…

安全学习DAY14_JS信息打点

信息打点——前端JS框架 文章目录 信息打点——前端JS框架小节概述-思维导图JS安全概述什么是JS渗透测试?前后端差异JS安全问题流行的Js框架如何判定JS开发应用? 测试方法(JS文件的获取以及分析方法1、手工搜索分析2、半自动Burp分析插件介绍…

problem(3):python IDE和python解释器

为什么写这篇文章呢?遇到了下面的问题,相同的解释器,如果运行angr库的代码,会出现 这样的情况,但是用spyder IDE 会显示正常,很奇怪 应该就是IDE的原因 IDE的循环导入问题 检查IDE配置: 如果可…

引流精准客源方法,学会这一招就够你用的了

科思创业汇 大家好,这里是科思创业汇,一个轻资产创业孵化平台。赚钱的方式有很多种,我希望在科思创业汇能够给你带来最快乐的那一种! 第一,你要想一想,你想吸引什么样的人? 您的排水目的是推…

构建语言模型:BERT 分步实施指南

学习目标 了解 BERT 的架构和组件。了解 BERT 输入所需的预处理步骤以及如何处理不同的输入序列长度。获得使用 TensorFlow 或 PyTorch 等流行机器学习框架实施 BERT 的实践知识。了解如何针对特定下游任务(例如文本分类或命名实体识别)微调 BERT。为什么我们需要 BERT? 正…

Vue3+SpringBoot快速开发模板

起因:个人开发过程经常会使用到Vue3SpringBoot技术栈来开发项目,每次在项目初始化时都需要涉及一些重复的整理工作,于是结合一些个人觉得不错的前后端模板进行整合,打通一些大多数项目都需要的实现的基础功能,以便于快…

Spring 事务管理

目录 1. 事务管理 1.1. Spring框架的事务支持模型的优势 1.1.1. 全局事务 1.1.2. 本地事务 1.1.3. Spring框架的一致化编程模型 1.2. 了解Spring框架的事务抽象(Transaction Abstraction) 1.2.1. Hibernate 事务设置 1.3. 用事务同步资源 1.3.1…

协议,序列化,反序列化,Json

文章目录 协议序列化和反序列化网络计算器protocol.hppServer.hppServer.ccClient.hppClient.cclog.txt通过结果再次理解通信过程 Json效果 协议 协议究竟是什么呢?首先得知道主机之间的网络通信交互的是什么数据,像平时使用聊天APP聊天可以清楚&#x…

springboot 对接 minio 分布式文件系统

1. minio介绍 Minio 是一个基于Go语言的对象存储服务。它实现了大部分亚马逊S3云存储服务接口,可以看做是是S3的开源版本,非常适合于存储大容量非结构化的数据,例如图片、视频、日志文件、备份数据和容器/虚拟机镜像等,而一个对象…

npm install时出现的问题Failed at the node-sass@4.14.1 postinstall script

从阿里云上拉取下来项目后,首先使用npm install 命令进行安装所需依赖,意想不到的事情发生了,报出了Failed at the node-sass4.14.1 postinstall script,这个问题,顿时一脸懵逼;询问前端大佬,给…

内存快照:宕机后,Redis如何实现快速恢复?RDB

AOF的回顾 回顾Redis 的AOF的持久化机制。 Redis 避免数据丢失的 AOF 方法。这个方法的好处,是每次执行只需要记录操作命令,需要持久化的数据量不大。一般而言,只要你采用的不是 always 的持久化策略,就不会对性能造成太大影响。 …

CS 144 Lab Six -- building an IP router

CS 144 Lab Six -- building an IP router 引言路由器的实现测试 对应课程视频: 【计算机网络】 斯坦福大学CS144课程 Lab Six 对应的PDF: Lab Checkpoint 5: building an IP router 引言 在本实验中,你将在现有的NetworkInterface基础上实现一个IP路由器&#xf…

scala连接mysql数据库

scala中通常是通过JDBC组件来连接Mysql。JDBC, 全称为Java DataBase Connectivity standard。 加载依赖 其中包含 JDBC driver <dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.29&l…

分库分表之基于Shardingjdbc+docker+mysql主从架构实现读写分离 (三)

本篇主要说明&#xff1a; 1. 因为这个mysql版本是8.0&#xff0c;所以当其中一台mysql节点挂掉之后&#xff0c;主从同步&#xff0c;甚至双向数据同步都失效了&#xff0c;所以本篇主要记录下当其中的节点挂掉之后如何再次生效。另外推荐大家使用mysql5.7的版本&#xff0c;这…

Opencv-C++笔记 (14) : 霍夫变换(直线、圆)

文章目录 一、霍夫变换-直线1.1霍夫变换-直线 原理详解 二、霍夫圆检测 一、霍夫变换-直线 Hough Line Transform用来做直线检测 前提条件 – 边缘检测已经完成 1、平面空间&#xff08;x,y&#xff09;到极坐标空间转换&#xff1b; 2、对极坐标进行变换&#xff0c;转化为…

FL Studio Producer Edition 21 v21.0.3 Build 3517 Windows/mac官方中文版

FL Studio Producer Edition 21 v21.0.3 Build 3517 Windows FL Studio Producer Edition 21 v21.0.3 Build 3517 Windows/mac官方中文版是一个完整的软件音乐制作环境或数字音频工作站&#xff08;DAW&#xff09;。它代表了 25 多年的创新发展&#xff0c;将您创作、编曲、录…

剑指offer65.不用加减乘除做加法

把二进制加法可以分为五进位加法和进位加法&#xff0c;无进位&#xff1a;000&#xff0c;011&#xff0c;101&#xff0c;有进位加法&#xff1a;110进位为1。可以发现无进位的加法与异或运算规律相同&#xff0c;有进位加法和与运算规律相同&#xff0c;无进位和na^b,有进位…

【Spring Boot】(一)Spring Boot 项目的创建和使用

文章目录 前言一、什么是 Spring Boot1.1 初识 Spring Boot1.2 Spring Boot 的核心设计思想1.3 Spring Boot 的优点 二、Spring Boot 项目的创建2.1 使用 IDEA 创建2.2 使用网页创建2.3 项目的目录结构 三、Hello World3.1 运行启动类3.2 通过浏览器页面输出 Hello World3.3 约…

QT 使用单例模式

目录 1. 单例模式介绍 2.单例模式实现 1. 单例模式介绍 有些时候我们在做 qt 项目的时候,要用到很多类. 例如我们用到的类有 A,B,C,D. 其中,A 是 B,C,D 中都需要用到的类,A 类非常的抢手. 但是,A 类非常的占内存,定义一个 A 对象需要 500M 内存,假如在 B,C,D 中都定义一个 A 类…