SolidUI社区-提示词链式思考(CoT)

背景

随着文本生成图像的语言模型兴起,SolidUI想帮人们快速构建可视化工具,可视化内容包括2D,3D,3D场景,从而快速构三维数据演示场景。SolidUI 是一个创新的项目,旨在将自然语言处理(NLP)与计算机图形学相结合,实现文生图功能。通过构建自研的文生图语言模型,SolidUI 利用 RLHF (Reinforcement Learning Human Feedback) 流程实现从文本描述到图形生成的过程。

项目地址: https://github.com/CloudOrc/SolidUI

项目镜像地址: https://gitee.com/CloudOrc/SolidUI

社区官网: https://website.solidui.top

官网项目地址:https://github.com/CloudOrc/SolidUI-Website

链式思考(CoT)

链式思考(CoT)提示是一种强大的提示技术,可以帮助语言模型进行复杂的推理。它由Wei等人在2022年首次提出,主要思想是通过提供中间推理步骤来实现复杂任务的零样本学习。

在这里插入图片描述
https://arxiv.org/abs/2201.11903

工作原理

CoT提示的工作原理是,在提示中添加语言模型需要遵循的显式推理链。例如,在判断一组数中的奇数相加是否为偶数这个任务中,提示会要求语言模型先将所有的奇数相加,然后判断总和是否为偶数。通过这种方式,可以引导语言模型逐步推理,而不是一步到位给出结论。

与传统的少样本学习相比,CoT提示可以以更少的示例完成学习。有时仅需一个示例搭配CoT提示,语言模型就能完成复杂的推理任务。这是因为提示本身已经提供了足够的上下文和指导,让语言模型明确应该如何思考。

CoT提示的一个变种是零样本CoT提示。它会在原始提示中添加“让我们逐步思考”的指示,引导语言模型自发地进行逐步推理。虽然结果并不总是完美,但在示例不充足的情况下,这种提示也展现出强大的几乎零样本学习能力。

提示词示例

## 输入提示词
我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?
让我们逐步思考。## 回答
首先,您从10个苹果开始。
您给了邻居和修理工各2个苹果,所以您还剩下10 - 2 - 2 = 6个苹果。
然后您买了5个苹果,所以现在您有6 + 5 = 11个苹果。
最后,您吃了1个苹果,所以您还剩下11 - 1 = 10个苹果。
所以您还剩下10个苹果。

结语

链式思考提示为语言模型注入了人类的推理过程,是目前实现复杂推理任务的最佳提示技术之一。它塑造了语言模型进行多步推理的能力,使其超越简单的模式匹配,向着真正的理解迈进。随着该技术的发展,我们期待语言模型的推理能力不断提升,最终达到甚至超过人类水平。

如果成为贡献者

  • 官方文档贡献。发现文档的不足、优化文档,持续更新文档等方式参与社区贡献。通过文档贡献,让开发者熟悉如何提交PR和真正参与到社区的建设。参考攻略:https://github.com/CloudOrc/SolidUI/discussions/54
  • 代码贡献。我们梳理了社区中简单并且容易入门的的任务,非常适合新人做代码贡献。请查阅新手任务列表:https://github.com/CloudOrc/SolidUI/issues/12
  • 内容贡献:发布SolidUI开源组件相关的内容,包括但不限于安装部署教程、使用经验、案例实践等,形式不限,请投稿给小助手。例如:https://github.com/CloudOrc/SolidUI/issues/10
  • 社区答疑:积极在社区中进行答疑、分享技术、帮助开发者解决问题等;
    其他:积极参与社区活动、成为社区志愿者、帮助社区宣传、为社区发展提供有效建议等;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/83146.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2462. 雇佣 K 位工人的总代价;948. 令牌放置;1262. 可被三整除的最大和

2462. 雇佣 K 位工人的总代价 核心思想&#xff1a;分情况讨论&#xff0c;当2*candidates > n 时&#xff0c;直接取前k个工人即可&#xff1b;当2*candidates< n时&#xff0c;我们可以维护两个最小堆&#xff0c;然后不断比较堆中的值&#xff0c;然后用i,j两个指针表…

Spring 使用注解储存对象

文章目录 前言存储 Bean 对象五大注解五大注解示例配置包扫描路径读取bean的示例 方法注解 Bean Bean 命名规则重命名 Bean 前言 通过在 spring-config 中添加bean的注册内容&#xff0c;我们已经可以实现基本的Spring读取和存储对象的操作了&#xff0c;但在操作中我们发现读…

使用node-red实现一个物体地图巡航的案例

背景 随着物联网技术的快速发展,物体地图巡航已经成为了一种常见的应用场景。本文将介绍如何使用Node-RED实现一个物体地图巡航的案例。Node-RED是一个基于Node.js的可视化编程工具,它可以帮助用户快速构建流程和数据流。通过Node-RED,我们可以轻松地实现物体地图巡航的功能…

Nginx虚拟主机和日志详解

目录 1.Nginx虚拟主机1.1基于IP虚拟主机1.2基于端口虚拟主机1.3基于域名实现的虚拟主机 2.日志详解 1.Nginx虚拟主机 虚拟主机&#xff0c;Nginx配置中的多个server{}区域对应不同的业务(站点) 虚拟主机方式基于域名的虚拟主机不同的域名访问不同的站点基于IP的虚拟主机不同的…

Maven基础总结

前言 Maven 是一个项目管理工具&#xff0c;可以对 Java 项目进行构建、依赖管理。 基本要求掌握 配置Maven环境直接查。 得会在IDEA创建Maven的java项目吧、会创建Maven的web项目吧、会创建多模块项目吧。 得会配置插件pligin、依赖dependency吧 一、Maven四大特性 1、…

Spring中Bean的“一生”(生命周期)

文章目录 一、图解二、文字解析总结 一、图解 >注&#xff1a;处于同一行的执行顺序是从左往右 二、文字解析 SpringBean的生命周期总体分为四个阶段&#xff1a;实例化>属性注入>初始化>销毁 Step1 实例化Bean&#xff1a;根据配置文件中Bean的定义&#xff0c;…

Pytorch量化之Post Train Static Quantization(训练后静态量化)

使用Pytorch训练出的模型权重为fp32&#xff0c;部署时&#xff0c;为了加快速度&#xff0c;一般会将模型量化至int8。与fp32相比&#xff0c;int8模型的大小为原来的1/4, 速度为2~4倍。 Pytorch支持三种量化方式&#xff1a; 动态量化&#xff08;Dynamic Quantization&…

微服务服务拆分和远程调用

一、服务架构比较 单体架构&#xff1a;简单方便&#xff0c;高度耦合&#xff0c;扩展性差&#xff0c;适合小型项目。例如&#xff1a;学生管理系统 分布式架构&#xff1a;松耦合&#xff0c;扩展性好&#xff0c;但架构复杂&#xff0c;难度大。适合大型互联网项目&#x…

python的gui界面程序爬虫,python的gui界面怎么打开

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;python的gui界面怎么打开&#xff0c;python的gui界面程序爬虫&#xff0c;今天让我们一起来看看吧&#xff01; Python支持多种图形界面的第三方库&#xff0c;包括&#xff1a; wxWidgets Qt GTK Tkinter&#xf…

[信号与系统系列] 正弦振幅调制之差拍信号

当将具有不同频率的两个正弦曲线相乘时&#xff0c;可以创建一个有趣的音频效果&#xff0c;称为差拍音符。这种现象听起来像颤音&#xff0c;最好通过选择一个频率非常小的信号与和另一个频率大约1KHz的信号&#xff0c;把二者混合从而听到。一些乐器能够自然产生差拍音符。使…

idea如何上传项目到github(超详细)

idea如何上传项目到github 1、IDEA配置2、项目上传到本地仓库2.1、创建本地git仓库2.2、Add操作2.3、Commit操作 3、项目上传到Github4、拿到登录Github的token 1、IDEA配置 File-Settings-VersionControl-Git Git的安装路径下bin目录下的git.exe可执行文件 可以直接点 Gene…

基于TF-IDF+TensorFlow+词云+LDA 新闻自动文摘推荐系统—深度学习算法应用(含ipynb源码)+训练数据集

目录 前言总体设计系统整体结构图系统流程图 运行环境Python 环境TensorFlow环境方法一方法二 模块实现1. 数据预处理1&#xff09;导入数据2&#xff09;数据清洗3&#xff09;统计词频 2. 词云构建3. 关键词提取4. 语音播报5. LDA主题模型6. 模型构建 系统测试工程源代码下载…

十九、docker学习-Dockerfile

Dockerfile 官网地址 https://docs.docker.com/engine/reference/builder/Dockerfile其实就是我们用来构建Docker镜像的源码&#xff0c;当然这不是所谓的编程源码&#xff0c;而是一些命令的集合&#xff0c;只要理解它的逻辑和语法格式&#xff0c;就可以很容易的编写Docke…

Android 面试重点之Framework (Handler篇)

近期在网上看到不少Android 开发分享的面试经验&#xff0c;我发现基本每个面经中多多少少都有Framework 底层原理的影子。它也是Android 开发中最重要的一个部分&#xff0c;面试官一般会通过 Framework底层中的一些逻辑原理由浅入深进行提问&#xff0c;来评估应聘者的真实水…

对强缓存和协商缓存的理解

浏览器缓存的定义&#xff1a; 浏览器缓存是浏览器在本地磁盘对用户最近请求过的文档进行存储&#xff0c;当访问者再次访问同一页面时&#xff0c;浏览器就可以直接从本地磁盘加载文档。 浏览器缓存分为强缓存和协商缓存。 浏览器是如何使用缓存的&#xff1a; 浏览器缓存…

HarmonyOS应用开发者基础认证考试题库

此博文为HarmonyOS应用开发者基础认证考试的最后的大考&#xff0c;要求100分取得90分方可获取证书、现将考试的题库进行分享&#xff0c;希望能帮到大家。但是需要注意的是&#xff0c;题库会不定时的进行题目删减&#xff0c;但是大概的内容是不会进行改变的。真心希望这篇博…

MongoDB 使用总结

&#x1f353; 简介&#xff1a;java系列技术分享(&#x1f449;持续更新中…&#x1f525;) &#x1f353; 初衷:一起学习、一起进步、坚持不懈 &#x1f353; 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正&#x1f64f; &#x1f353; 希望这篇文章对你有所帮助,欢…

数据结构和算法——哈希查找冲突处理方法(开放地址法-线性探测、平方探测、双散列探测、再散列,分离链接法)

目录 开放地址法&#xff08;Open Addressing&#xff09; 线性探测&#xff08;Linear Probing&#xff09; 散列表查找性能分析 平方探测&#xff08;Quadratic Probing&#xff09; 定理 平方探测法的查找与插入 双散列探测法&#xff08;Double Hashing&#xff09…

爬虫011_元组高级操作_以及字符串的切片操作---python工作笔记030

获取元组的下标对应的值 注意元组是不可以修改值的,只能获取不能修改 但是列表是可以修改值的对吧

界面控件DevExpress WPF Chart组件——拥有超快的数据可视化库!

DevExpress WPF Chart组件拥有超大的可视化数据集&#xff0c;并提供交互式仪表板与高性能WPF图表库。DevExpress Charts提供了全面的2D / 3D图形集合&#xff0c;包括数十个UI定制和数据分析/数据挖掘选项。 PS&#xff1a;DevExpress WPF拥有120个控件和库&#xff0c;将帮助…