Python-OpenCV中的图像处理-形态学转换

Python-OpenCV中的图像处理-形态学转换

  • 形态学转换
    • 腐蚀
    • 膨胀
    • 开运算
    • 闭运算
    • 形态学梯度
    • 礼帽
    • 黑帽
    • 形态学操作之间的关系
  • 形态学代码例程

形态学转换

  • 形态学操作:腐蚀,膨胀,开运算,闭运算,形态学梯度,礼帽,黑帽等
  • 主要涉及函数:cv2.erode(), cv2.dilate(), cv2.morphologyEx()
  • 原理:形态学操作是根据图像形状进行的简单操作。一般情况下对二值化图像进行的操作。需要输入两个参数,一个是原始图像,第二个被称为结构化元素或核,它是用来决定操作的性质的。两个基本的形态学操作是腐蚀和膨胀。他们的变体构成了开运算,闭运算,梯度等。

腐蚀

就像土壤侵蚀一样,这个操作会把前景物体的边界腐蚀掉(但是前景仍然是白色)。这是怎么做到的呢?卷积核沿着图像滑动,如果与卷积核对应的原图像的所有像素值都是 1,那么中心元素就保持原来的像素值,否则就变为零。这回产生什么影响呢?根据卷积核的大小靠近前景的所有像素都会被腐蚀掉(变为 0),所以前景物体会变小,整幅图像的白色区域会减少。这对于去除白噪声很有用,也可以用来断开两个连在一块的物体等。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Dilation.png', cv2.IMREAD_GRAYSCALE)
kernel = np.ones((5,5), np.uint8)
erosion = cv2.erode(img, kernel=kernel, iterations=1)plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(erosion, cv2.COLOR_BGR2RGB)), plt.title('erode'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

膨胀

与腐蚀相反,与卷积核对应的原图像的像素值中只要有一个是 1,中心元素的像素值就是 1。所以这个操作会增加图像中的白色区域(前景)。一般在去噪声时先用腐蚀再用膨胀。因为腐蚀在去掉白噪声的同时,也会使前景对象变小。所以我们再对他进行膨胀。这时噪声已经被去除了,不会再回来了,但是前景还在并会增加。膨胀也可以用来连接两个分开的物体。

import numpy as np
import cv2
from matplotlib import pyplot as plt# 膨胀
img = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Original_Image.png', cv2.IMREAD_GRAYSCALE)kernel = np.ones((5,5), np.uint8)
dilation = cv2.dilate(img, kernel=kernel, iterations=1)plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(dilation, cv2.COLOR_BGR2RGB)), plt.title('dilate'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

开运算

先腐蚀再膨胀就叫做开运算。它被用来去除噪声。这里我们用到的函数是 cv2.morphologyEx()
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

闭运算

先膨胀再腐蚀就叫做闭运算。它经常被用来填充前景物体中的小洞,或者前景物体上的小黑点
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

形态学梯度

其实就是一幅图像膨胀与腐蚀的差别,结果看上去就像前景物体的轮廓。
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)

礼帽

原始图像与进行开运算之后得到的图像的差。下面的例子是用一个 9x9 的核进行礼帽操作的结果。
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)

黑帽

进行闭运算之后得到的图像与原始图像的差
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)

形态学操作之间的关系

形态学转换

  • Opening:
    dst = open(src, element) = dilate(erode(src, element), element)
  • Closing:
    dst = close(src, element) = erode(dilate(src, element), element)
  • Morphological gradient:
    dst = morph_grad(src, element) = dilate(src, element) - erode(src, element)
  • “Top hat”:
    dst = tophat(src, element) = src - open(src, element)
  • “Black hat”:
    dst = blackhat(src, element) = close(src, element) - src

形态学代码例程

import numpy as np
import cv2
from matplotlib import pyplot as plt'''
形态学转换
Opening: dst = open(src, element) = dilate(erode(src, element), element)Closing:dst = close(src, element) = erode(dilate(src, element), element)Morphological gradient:dst = morph_grad(src, element) = dilate(src, element) - erode(src, element)"Top hat":dst = tophat(src, element) = src - open(src, element)"Black hat":dst = blackhat(src, element) = close(src, element) - src
'''# 开运算
# 先进行腐蚀在进行膨胀叫做开运算。用来去除噪音
# opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)# 闭运算
# 先进行膨胀再进行腐蚀叫做闭运算。用来填充前景物体中的小洞,或者全景上的小黑点。
# closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)# 形态学梯度
# 就是一副图像膨胀与腐蚀的差别,结果看上去就像前景物体的轮廓。
# gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)# 礼帽
# 原始图像与进行开运算之后得到的图像的差
# tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)# 黑帽
# 原始图像与进行闭运算之后得到的图像的差
# blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)# 结构化元素
kernel_rect = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))       # 矩形核
kernel_elli = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))    # 椭圆核
kernel_cros = cv2.getStructuringElement(cv2.MORPH_CROSS, (5,5))      # 十字核# 卷积核
# kernel = kernel_rects
# kernel = kernel_elli
# kernel = kernel_cros
kernel = np.ones((5,5), np.uint8)
kernel9x9 = np.ones((15,15), np.uint8)img_origin = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Dilation.png', cv2.IMREAD_COLOR)
img_gray = cv2.imread('./resource/opencv/image/Morphology_1_Tutorial_Theory_Dilation.png', cv2.IMREAD_GRAYSCALE)# 开运算 腐蚀=>膨胀
opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel)# 闭运算 膨胀=>腐蚀
closing = cv2.morphologyEx(img_gray, cv2.MORPH_CLOSE, kernel)# 梯度 膨胀-腐蚀 
gradient = cv2.morphologyEx(img_gray, cv2.MORPH_GRADIENT, kernel)# 礼帽  原始图像与进行开运算之后得到的图像的差
tophat = cv2.morphologyEx(img_gray, cv2.MORPH_TOPHAT, kernel9x9)# 黑帽 进行闭运算之后与原始图像的图像的差
blackhat = cv2.morphologyEx(img_gray, cv2.MORPH_BLACKHAT, kernel9x9)# 腐蚀
erosion = cv2.erode(img_gray, kernel=kernel, iterations=1)# 膨胀 
dilation = cv2.dilate(img_gray, kernel=kernel, iterations=1)plt.subplot(331), plt.imshow(cv2.cvtColor(img_origin,cv2.COLOR_BGR2RGB), 'gray'), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(332), plt.imshow(img_gray, 'gray'), plt.title('gray'), plt.xticks([]), plt.yticks([])
plt.subplot(333), plt.imshow(opening, 'gray'), plt.title('open'), plt.xticks([]), plt.yticks([])
plt.subplot(334), plt.imshow(closing, 'gray'), plt.title('close'), plt.xticks([]), plt.yticks([])
plt.subplot(335), plt.imshow(gradient, 'gray'), plt.title('gradient'), plt.xticks([]), plt.yticks([])
plt.subplot(336), plt.imshow(tophat, 'gray'), plt.title('tophat'), plt.xticks([]), plt.yticks([])
plt.subplot(337), plt.imshow(blackhat, 'gray'), plt.title('blackhat'), plt.xticks([]), plt.yticks([])
plt.subplot(338), plt.imshow(erosion, 'gray'), plt.title('erode'), plt.xticks([]), plt.yticks([])
plt.subplot(339), plt.imshow(dilation, 'gray'), plt.title('dilate'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/83695.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

B树的插入与删除过程

B树的插入 原树: 插入key后,若导致原节点关键字数超过上限,则从中间位置( ⌈ m 2 ⌉ \lceil\frac{m}{2}\rceil ⌈2m​⌉)将关键字分成两部分,左部分包含的关键字放在原节点中,右部分包含的关键…

前端下载文化部几种方法(excel,zip,html,markdown、图片等等)和导出 zip 压缩包

文章目录 1、location.href2、location.href3、a标签4、请求后端的方式5、文件下载的方式6、Blob和Base647、下载附件方法(excel,zip,html,markdown)8、封装下载函数9、导出 zip 压缩包相关方法(流方式) 总结 1、location.href //get请求 window.location.href url;2、locati…

死锁的成因,和解决方案总结

何为死锁 死锁是多线程或并发程序中的一种情况,当多个线程因为竞争资源而相互等待,并且无法继续执行的情况。在死锁中,每个线程都在等待其他线程释放资源,从而导致所有线程都陷入无限等待状态,无法继续向前执行&#…

0805hw

1. #include <myhead.h> void Bub_sort(int *arr,int n)//冒泡排序 {for(int i1;i<n;i){int count0;for(int j0;j<n-i;j){if(arr[j]>arr[j1]){int temparr[j];arr[j]arr[j1];arr[j1]temp;count;}}if(count0){break;}}printf("冒泡排序后输出结果:\n"…

uni-app离线打包高德地图导入android studio不能正常显示

本人使用的uni-app SDK版本&#xff1a;Android-SDK3.8.7.81902_20230704 1.导入以上文件&#xff0c;依赖已经自动添加了 2.确保这个正常引入 3.修改AndroidMainifest.xml,添加自己的密钥

整理mongodb文档:删

个人博客 整理mongodb文档:删 求关注&#xff0c;哪儿不足&#xff0c;求大佬们指出&#xff0c;哪儿写的不够通俗易懂跟清晰&#xff0c;也求指出 文章概叙 本文主要是介绍了删除数据的几个方法&#xff0c;主要还是在介绍deleteMany、deleteOne以及remove&#xff0c;对于…

JAVA基础之放弃使用Random

随机是日常生活中经常遇到的非常有趣的东西&#xff0c;比如说抛硬币&#xff0c;他的不可预知性总是让我们特别着迷&#xff0c;在拿不定主意时&#xff0c;有些人就喜欢用抛硬币的方式来帮助我们做决定。体育领域也喜欢用喜欢用抛硬币的方式来猜先。随机数功能是Java非常非常…

14个前端开发者应该知道的实用网站

在本文中&#xff0c;我将分享一些非常有用的网站合集&#xff0c;这些网站可以在你的日常工作中极大地帮助你。这些网站已经成为我各种任务的首选资源&#xff0c;节省了我的时间&#xff0c;提高了工作效率 文档自动化 Documatic 是一款专为开发人员设计的非常高效的搜索引擎…

Pytorch深度学习-----现有网络模型的使用及修改(VGG16模型)

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用&#xff08;ToTensor&#xff0c;Normalize&#xff0c;Resize &#xff0c;Co…

STM32 CubeMX USB_MSC(存储设备U盘)

STM32 CubeMX STM32 CubeMX USB_MSC(存储设备U盘&#xff09; STM32 CubeMX前言 《使用内部Flash》——U盘一、STM32 CubeMX 设置USB时钟设置USB使能UBS功能选择FATFS功能 二、代码部分修改代码"usbd_storage_if.c"修改代码"user_diskio.c"main函数初始化插…

每天一道leetcode:剑指 Offer 27. 二叉树的镜像(适合初学者递归树)

今日份题目&#xff1a; 请完成一个函数&#xff0c;输入一个二叉树&#xff0c;该函数输出它的镜像。 例如输入&#xff1a; 4 / \ 2 7 / \ / \ 1 3 6 9 镜像输出&#xff1a; 4 / \ 7 2 / \ / \ 9 6 3 1 示例 输入&#xff1a;root [4,2,7…

c基础扫雷

和三子棋一样&#xff0c;主函数先设计游戏菜单界面&#xff0c;这里就不做展示了。 初始化棋盘 初级扫雷大小为9*9的棋盘&#xff0c;但排雷是周围一圈进行排雷(8格)&#xff0c;而边界可能会越界。数组扩大了一圈,行和列都加了2&#xff0c;所以我们用一个11*11的数组来初始化…

数据结构—树和二叉树

5.树和二叉树 5.1树和二叉树的定义 树形结构&#xff08;非线性结构&#xff09;&#xff1a;结点之间有分支&#xff0c;具有层次关系。 5.1.1树的定义 树&#xff08;Tree&#xff09;是n&#xff08;n≥0&#xff09;个结点的有限集。 若n0&#xff0c;称为空树&#x…

Vue2嵌入HTML页面空白、互相传参、延迟加载等问题解决方案

一、需求分析 最近做的一个用H5加原生开发的html项目&#xff0c;现需要集成到Vue2.0项目里面来。遇到的相关问题做个记录和总结&#xff0c;以便能帮到大家避免踩坑。 二、问题记录 1、页面空白问题 将html页面通过iframe的方式嵌入进来之后&#xff0c;发现页面是空白的&am…

面试热题(倒数第k个结点)

输入一个链表&#xff0c;输出该链表中倒数第k个节点。为了符合大多数人的习惯&#xff0c;本题从1开始计数&#xff0c;即链表的尾节点是倒数第1个节点。 例如&#xff0c;一个链表有 6 个节点&#xff0c;从头节点开始&#xff0c;它们的值依次是 1、2、3、4、5、6。这个链表…

opencv动态目标检测

文章目录 前言一、效果展示二、实现方法构造形态学操作所需的核:创建背景减除模型:形态学操作:轮廓检测: 三、代码python代码C代码 总结参考文档 前言 很久没更新文章了&#xff0c;这次因为工作场景需要检测动态目标&#xff0c;特此记录一下。 一、效果展示 二、实现方法 基…

图的深度优先遍历和广度优先遍历

目录 图的创建和常用方法 深度优先遍历&#xff08;Depth First Search&#xff09; 广度优先遍历&#xff08;Broad First Search&#xff09; 图的创建和常用方法 //无向图 public class Graph {//顶点集合private ArrayList<String> vertexList;//存储对应的邻接…

JVM工作的总体机制概述

JDK、JRE、JVM关系回顾 JVM&#xff1a;Java Virtual Machine&#xff0c;翻译过来是Java虚拟机JRE&#xff1a;Java Runtime Environment&#xff0c;翻译过来是Java运行时环境 JREJVMJava程序运行时所需要的类库JDK&#xff1a;Java Development Kits&#xff0c;翻译过来是…

进程 的初识

程序和进程有什么区别 程序是静态的概念&#xff0c;gcc xxx.c -o pro 磁盘中生成的文件&#xff0c;叫做程序。进程是程序的一次运行活动&#xff0c;通俗点的意思就是程序跑起来了&#xff0c;系统中就多了一个进程。 如何查看系统中有哪些进程 使用 ps 指令&#xff08;完整…

解决vue3+echarts关于无法获取dom宽度和高度的问题

解决vue3echarts关于无法获取dom宽度和高度的问题 近期写vue3项目&#xff0c;很多地方都用到了echarts&#xff0c;刚开始写的时候&#xff0c;发现图一直出不来&#xff0c;报错/报警内容一般有两项&#xff1a; Uncaught (in promise) Error: Initialize failed: invalid …