使用 prometheus client SDK 暴露指标

目录

  • 1. 使用 prometheus client SDK 暴露指标
    • 1.1. How Go exposition works
    • 1.2. Adding your own metrics
    • 1.3. Other Go client features
  • 2. Golang Application monitoring using Prometheus
    • 2.1. Metrics and Labels
    • 2.2. Metrics Types
      • 2.2.1. Counters:
      • 2.2.2. Gauges:
      • 2.2.3. Histograms:
      • 2.2.4. Summaries
    • 2.3. Setting Up Our Go Project
    • 2.4. Adding metrics to the application
    • 2.5. Dockerizing the application
    • 2.6. Visualizing metrics using Grafana

1. 使用 prometheus client SDK 暴露指标

1.1. How Go exposition works

To expose Prometheus metrics in a Go application, you need to provide a /metrics HTTP endpoint. You can use the prometheus/promhttp library’s HTTP Handler as the handler function.

This minimal application, for example, would expose the default metrics for Go applications via http://localhost:2112/metrics:

package mainimport ("net/http""github.com/prometheus/client_golang/prometheus/promhttp"
)func main() {http.Handle("/metrics", promhttp.Handler())http.ListenAndServe(":2112", nil)
}

To start the application:

go run main.go

To access the metrics:

curl http://localhost:2112/metrics

1.2. Adding your own metrics

The application above exposes only the default Go metrics. You can also register your own custom application-specific metrics. This example application exposes a myapp_processed_ops_total counter that counts the number of operations that have been processed thus far. Every 2 seconds, the counter is incremented by one.

package mainimport ("net/http""time""github.com/prometheus/client_golang/prometheus""github.com/prometheus/client_golang/prometheus/promauto""github.com/prometheus/client_golang/prometheus/promhttp"
)func recordMetrics() {go func() {for {opsProcessed.Inc()time.Sleep(2 * time.Second)}}()
}var (opsProcessed = promauto.NewCounter(prometheus.CounterOpts{Name: "myapp_processed_ops_total",Help: "The total number of processed events",})
)func main() {recordMetrics()http.Handle("/metrics", promhttp.Handler())http.ListenAndServe(":2112", nil)
}

In the metrics output, you’ll see the help text, type information, and current value of the myapp_processed_ops_total counter:

# HELP myapp_processed_ops_total The total number of processed events
# TYPE myapp_processed_ops_total counter
myapp_processed_ops_total 5

You can configure a locally running Prometheus instance to scrape metrics from the application. Here’s an example prometheus.yml configuration:

scrape_configs:
- job_name: myappscrape_interval: 10sstatic_configs:- targets:- localhost:2112

1.3. Other Go client features

In this guide we covered just a small handful of features available in the Prometheus Go client libraries. You can also expose other metrics types, such as gauges and histograms, non-global registries, functions for pushing metrics to Prometheus PushGateways, bridging Prometheus and Graphite, and more.

2. Golang Application monitoring using Prometheus

In this article, you will learn the basics of Prometheus including what metrics are, the different types of metrics and when they are used. After that, you will expose metrics of a Golang application and visualize them using Grafana.

To ensure our applications’ quality, some kind of quality monitoring and quality checks need to be executed. These quality checks often compare a given metric captured from the application e.g. throughput or error rate, with some defined value e.g. error rate < 0,1%.

Prometheus is an open source monitoring and alerting tool that helps us to collect and expose these metrics from our application in an easy and reliable way.

In this article, you will learn the basics of Prometheus including what metrics are, the different types of metrics and when they are used. After that, you will expose metrics of a Golang application and visualize them using Grafana.

2.1. Metrics and Labels

Simply put, metrics measure a particular value e.g. the response time of your application over time. Once the metrics are exposed from the application using some kind of instrumented system Prometheus stores them in a time-series database and makes them promptly available using queries.

# Total number of HTTP request
http_requests_total# Response status of HTTP request
response_status# Duration of HTTP requests in seconds
http_response_time_seconds

If you have more than one service for a specific metric you can add a label to specify which service the metric is from. For example, you could add a service label to the http_requests_total metric to differentiate between each service’s request. Another useful metric would be the URL of the different response statuses:

# Total number of HTTP request
http_requests_total{service="builder"}# Response status of HTTP request
response_status{path="/"}
response_status{path="/articles"}

Augmenting metrics with the correct labels will make it easy to query them, especially when you have many different services.

2.2. Metrics Types

Prometheus provides four different metric types each with their advantages and disadvantages that make them useful for different use-cases. In this part of the article we are going to take a close look at all four of them.

2.2.1. Counters:

Counters are a simple metric type that can only be incremented or be reset to zero on restart. It is often used to count primitive data like the total number of requests to a services or number of tasks completed. Most counters are therefore named using the _total suffix e.g. http_requests_total.

# Total number of HTTP request
http_requests_total# Total number of completed jobs
jobs_completed_total

The absolute value of these counters is often irrelevant and does not give you much information about the applications state. The real information can be gathered by their evolution over time which can be obtained using the rate() function.

2.2.2. Gauges:

Gauges also represent a single numerical value but different to counters the value can go up as well as down. Therefore gauges are often used for measured values like temperature, humidy or current memory usage.

Unlike with counters the current value of a gauge is meaningful and can be directly used in graphs and tests.

2.2.3. Histograms:

Histograms are used to measure the frequency of value observations that fall into specific predefined buckets. This means that they will provide information about the distribution of a metric like response time and signal outliers.

By default Prometheus provides the following buckets: .005, .01, .025, .05, .075, .1, .25, .5, .75, 1, 2.5, 5, 7.5, 10. These buckets are not suitable for every measurement and can therefore easily be changed.

2.2.4. Summaries

Summaries are very similar to Histograms because they both expose the distribution of a given data set. The one major difference is that a Histogram estimate quantiles on the Prometheus server while Summaries are calculated on the client side.

Summaries are more accurate for some pre-defined quantiles but can be a lot more resource expensive because of the client-side calculations. That is why it is recommended to use Histograms for most use-cases.

2.3. Setting Up Our Go Project

Before we can use Prometheus, we first need to build a simple application to expose some basic metrics. For this, we will build a simple Golang HTTP server that serves a static HTML and CSS file when accessing localhost:9000.

Let’s start by creating the files needed for the project. This can be done using the following commands:

mkdir static
touch main.go Dockerfile static/index.html

The HTTP server is written using Mux and will serve the static directory containing the HTML and CSS file you created above.

package mainimport ("fmt""github.com/gorilla/mux""log""net/http"
)func main() {router := mux.NewRouter()// Serving static filesrouter.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))fmt.Println("Serving requests on port 9000")err := http.ListenAndServe(":9000", router)log.Fatal(err)
}

The HTML file will only contain an H1 tag with “Hello World!” as its content and import a CSS file.

<html>
<head><title>Hello server</title><link rel="stylesheet" href="style.css"/>
</head>
<body>
<div><h1>Hello World!</h1>
</div>
</body>
</html>

2.4. Adding metrics to the application

Now that the application’s basic functionality is finished, we can start exposing metrics that Prometheus will later scrape. The official Golang Prometheus library automatically exposes some build-in metrics and simply needs to be imported and added to the HTTP server.

package mainimport ("fmt""github.com/gorilla/mux""log""net/http""github.com/prometheus/client_golang/prometheus/promhttp"
)func main() {router := mux.NewRouter()// Serving static filesrouter.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))// Prometheus endpointrouter.Path("/prometheus").Handler(promhttp.Handler())fmt.Println("Serving requests on port 9000")err := http.ListenAndServe(":9000", router)log.Fatal(err)
}

Now that we have added the Prometheus library and exposed the handler on /prometheus we can see the metrics by starting the application and navigating to localhost:9000/prometheus. The output should look similar to this:

# HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 2.07e-05
go_gc_duration_seconds{quantile="0.25"} 7.89e-05
go_gc_duration_seconds{quantile="0.5"} 0.000137
go_gc_duration_seconds{quantile="0.75"} 0.0001781
go_gc_duration_seconds{quantile="1"} 0.0002197
go_gc_duration_seconds_sum 0.0071928
go_gc_duration_seconds_count 56
# HELP go_goroutines Number of goroutines that currently exist.
# TYPE go_goroutines gauge
go_goroutines 8
# HELP go_info Information about the Go environment.
# TYPE go_info gauge
go_info{version="go1.15"} 1
# HELP go_memstats_alloc_bytes Number of bytes allocated and still in use.
# TYPE go_memstats_alloc_bytes gauge
go_memstats_alloc_bytes 4.266136e+06
# HELP go_memstats_alloc_bytes_total Total number of bytes allocated, even if freed.
# TYPE go_memstats_alloc_bytes_total counter
go_memstats_alloc_bytes_total 1.17390144e+08
# HELP go_memstats_buck_hash_sys_bytes Number of bytes used by the profiling bucket hash table.
# TYPE go_memstats_buck_hash_sys_bytes gauge
go_memstats_buck_hash_sys_bytes 1.456289e+06
# HELP go_memstats_frees_total Total number of frees.
# TYPE go_memstats_frees_total counter
go_memstats_frees_total 435596
# HELP go_memstats_gc_cpu_fraction The fraction of this program's available CPU time used by the GC since the program started.
# TYPE go_memstats_gc_cpu_fraction gauge
go_memstats_gc_cpu_fraction 1.5705717722141224e-06
# HELP go_memstats_gc_sys_bytes Number of bytes used for garbage collection system metadata.
# TYPE go_memstats_gc_sys_bytes gauge
go_memstats_gc_sys_bytes 4.903096e+06
# HELP go_memstats_heap_alloc_bytes Number of heap bytes allocated and still in use.
# TYPE go_memstats_heap_alloc_bytes gauge
go_memstats_heap_alloc_bytes 4.266136e+06
# HELP go_memstats_heap_idle_bytes Number of heap bytes waiting to be used.
# TYPE go_memstats_heap_idle_bytes gauge
go_memstats_heap_idle_bytes 6.1046784e+07
# HELP go_memstats_heap_inuse_bytes Number of heap bytes that are in use.
# TYPE go_memstats_heap_inuse_bytes gauge
go_memstats_heap_inuse_bytes 5.210112e+06
# HELP go_memstats_heap_objects Number of allocated objects.
# TYPE go_memstats_heap_objects gauge
go_memstats_heap_objects 17572
# HELP go_memstats_heap_released_bytes Number of heap bytes released to OS.
# TYPE go_memstats_heap_released_bytes gauge
go_memstats_heap_released_bytes 6.0588032e+07
# HELP go_memstats_heap_sys_bytes Number of heap bytes obtained from system.
# TYPE go_memstats_heap_sys_bytes gauge
go_memstats_heap_sys_bytes 6.6256896e+07
# HELP go_memstats_last_gc_time_seconds Number of seconds since 1970 of last garbage collection.
# TYPE go_memstats_last_gc_time_seconds gauge
go_memstats_last_gc_time_seconds 1.61550102568985e+09
# HELP go_memstats_lookups_total Total number of pointer lookups.
# TYPE go_memstats_lookups_total counter
go_memstats_lookups_total 0
# HELP go_memstats_mallocs_total Total number of mallocs.
# TYPE go_memstats_mallocs_total counter
go_memstats_mallocs_total 453168
# HELP go_memstats_mcache_inuse_bytes Number of bytes in use by mcache structures.
# TYPE go_memstats_mcache_inuse_bytes gauge
go_memstats_mcache_inuse_bytes 27776
# HELP go_memstats_mcache_sys_bytes Number of bytes used for mcache structures obtained from system.
# TYPE go_memstats_mcache_sys_bytes gauge
go_memstats_mcache_sys_bytes 32768
# HELP go_memstats_mspan_inuse_bytes Number of bytes in use by mspan structures.
# TYPE go_memstats_mspan_inuse_bytes gauge
go_memstats_mspan_inuse_bytes 141576
# HELP go_memstats_mspan_sys_bytes Number of bytes used for mspan structures obtained from system.
# TYPE go_memstats_mspan_sys_bytes gauge
go_memstats_mspan_sys_bytes 147456
# HELP go_memstats_next_gc_bytes Number of heap bytes when next garbage collection will take place.
# TYPE go_memstats_next_gc_bytes gauge
go_memstats_next_gc_bytes 6.42088e+06
# HELP go_memstats_other_sys_bytes Number of bytes used for other system allocations.
# TYPE go_memstats_other_sys_bytes gauge
go_memstats_other_sys_bytes 1.931943e+06
# HELP go_memstats_stack_inuse_bytes Number of bytes in use by the stack allocator.
# TYPE go_memstats_stack_inuse_bytes gauge
go_memstats_stack_inuse_bytes 851968
# HELP go_memstats_stack_sys_bytes Number of bytes obtained from system for stack allocator.
# TYPE go_memstats_stack_sys_bytes gauge
go_memstats_stack_sys_bytes 851968
# HELP go_memstats_sys_bytes Number of bytes obtained from system.
# TYPE go_memstats_sys_bytes gauge
go_memstats_sys_bytes 7.5580416e+07
# HELP go_threads Number of OS threads created.
# TYPE go_threads gauge
go_threads 13
# HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.
# TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 1.83
# HELP process_max_fds Maximum number of open file descriptors.
# TYPE process_max_fds gauge
process_max_fds 1.048576e+06
# HELP process_open_fds Number of open file descriptors.
# TYPE process_open_fds gauge
process_open_fds 10
# HELP process_resident_memory_bytes Resident memory size in bytes.
# TYPE process_resident_memory_bytes gauge
process_resident_memory_bytes 2.8770304e+07
# HELP process_start_time_seconds Start time of the process since unix epoch in seconds.
# TYPE process_start_time_seconds gauge
process_start_time_seconds 1.61549436213e+09
# HELP process_virtual_memory_bytes Virtual memory size in bytes.
# TYPE process_virtual_memory_bytes gauge
process_virtual_memory_bytes 1.564209152e+09
# HELP process_virtual_memory_max_bytes Maximum amount of virtual memory available in bytes.
# TYPE process_virtual_memory_max_bytes gauge
process_virtual_memory_max_bytes -1
# HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being served.
# TYPE promhttp_metric_handler_requests_in_flight gauge
promhttp_metric_handler_requests_in_flight 1
# HELP promhttp_metric_handler_requests_total Total number of scrapes by HTTP status code.
# TYPE promhttp_metric_handler_requests_total counter
promhttp_metric_handler_requests_total{code="200"} 447
promhttp_metric_handler_requests_total{code="500"} 0
promhttp_metric_handler_requests_total{code="503"} 0

These metrics are great, but they are not very useful most of the time. Instead of low-level metrics, we now want to expose custom metrics that will expose our application’s internal information that we can later visualize or use in tests or health checks.

Let’s start with a rather basic metric: the total number of HTTP requests made to the server represented in a counter.

package mainimport ("fmt""github.com/gorilla/mux""github.com/prometheus/client_golang/prometheus""github.com/prometheus/client_golang/prometheus/promauto""github.com/prometheus/client_golang/prometheus/promhttp""log""net/http""strconv"
)var totalRequests = prometheus.NewCounterVec(prometheus.CounterOpts{Name: "http_requests_total",Help: "Number of get requests.",},[]string{"path"},
)func prometheusMiddleware(next http.Handler) http.Handler {return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {rw := NewResponseWriter(w)next.ServeHTTP(rw, r)totalRequests.WithLabelValues(path).Inc()})
}func init() {prometheus.Register(totalRequests)
}func main() {router := mux.NewRouter()router.Use(prometheusMiddleware)// Prometheus endpointrouter.Path("/prometheus").Handler(promhttp.Handler())// Serving static filesrouter.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))fmt.Println("Serving requests on port 9000")err := http.ListenAndServe(":9000", router)log.Fatal(err)
}

Let’s break the code changes down for better understanding:

  • The metric needs to be created using the prometheus package. The NewCounterVec() method is used to create a new counter metric.
  • To expose the created metric in the HTTP handler we must register the metric to Prometheus using the register() method.
  • Lastly, we need to implement the functionality of the metric in our code. Here we created and registered a new HTTP middleware that runs every time the server receives an HTTP request and increases the metric counter using the Inc() method.

The following code block contains two more metrics with different metric types: response_status and response_time perspectively.

package mainimport ("fmt""github.com/gorilla/mux""github.com/prometheus/client_golang/prometheus""github.com/prometheus/client_golang/prometheus/promauto""github.com/prometheus/client_golang/prometheus/promhttp""log""net/http""strconv"
)type responseWriter struct {http.ResponseWriterstatusCode int
}func NewResponseWriter(w http.ResponseWriter) *responseWriter {return &responseWriter{w, http.StatusOK}
}func (rw *responseWriter) WriteHeader(code int) {rw.statusCode = coderw.ResponseWriter.WriteHeader(code)
}var totalRequests = prometheus.NewCounterVec(prometheus.CounterOpts{Name: "http_requests_total",Help: "Number of get requests.",},[]string{"path"},
)var responseStatus = prometheus.NewCounterVec(prometheus.CounterOpts{Name: "response_status",Help: "Status of HTTP response",},[]string{"status"},
)var httpDuration = promauto.NewHistogramVec(prometheus.HistogramOpts{Name: "http_response_time_seconds",Help: "Duration of HTTP requests.",
}, []string{"path"})func prometheusMiddleware(next http.Handler) http.Handler {return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {route := mux.CurrentRoute(r)path, _ := route.GetPathTemplate()timer := prometheus.NewTimer(httpDuration.WithLabelValues(path))rw := NewResponseWriter(w)next.ServeHTTP(rw, r)statusCode := rw.statusCoderesponseStatus.WithLabelValues(strconv.Itoa(statusCode)).Inc()totalRequests.WithLabelValues(path).Inc()timer.ObserveDuration()})
}func init() {prometheus.Register(totalRequests)prometheus.Register(responseStatus)prometheus.Register(httpDuration)
}func main() {router := mux.NewRouter()router.Use(prometheusMiddleware)// Prometheus endpointrouter.Path("/prometheus").Handler(promhttp.Handler())// Serving static filesrouter.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))fmt.Println("Serving requests on port 9000")err := http.ListenAndServe(":9000", router)log.Fatal(err)
}

2.5. Dockerizing the application

Now that the metrics are implemented in the application we can Dockerize the application to make running it with Prometheus easier.

FROM golang:1.15.0# Set the Current Working Directory inside the container
WORKDIR /appRUN export GO111MODULE=on# Copy go mod and sum files
COPY go.mod go.sum ./# Download all dependencies. Dependencies will be cached if the go.mod and go.sum files are not changed
RUN go mod downloadCOPY . .# Build the application
RUN go build -o main .# Expose port 9000 to the outside world
EXPOSE 9000# Command to run the executable
CMD ["./main"]

The Dockerfile will download the dependencies, copy all files and build the application. After completing the Dockerfile, we can put the container and Prometheus into a Docker-Compose file.

version: '3.1'services:golang:build:context: ./dockerfile: Dockerfilecontainer_name: golangrestart: alwaysports:- '9000:9000'prometheus:image: prom/prometheus:v2.24.0volumes:- ./prometheus/:/etc/prometheus/- prometheus_data:/prometheuscommand:- '--config.file=/etc/prometheus/prometheus.yml'- '--storage.tsdb.path=/prometheus'- '--web.console.libraries=/usr/share/prometheus/console_libraries'- '--web.console.templates=/usr/share/prometheus/consoles'ports:- 9090:9090restart: alwaysvolumes:prometheus_data:

The only thing that we need to do now before starting the applications is configuring the Prometheus endpoint. For that, we are going to create a configuration file:

mkdir prometheus
touch prometheus/prometheus.yml

Here we define the URL of the page that Prometheus should scrape the data from, which equals to ContainerIP:Port/prometheus for our application.

global:scrape_interval:     15sevaluation_interval: 15sscrape_configs:- job_name: prometheusstatic_configs:- targets: ['localhost:9090']- job_name: golang metrics_path: /prometheusstatic_configs:- targets:- golang:9000

After adding the configuration we can start the application using docker-compose:

docker-compose up -d

Now we can access Prometheus by visiting localhost:9090 in our browser.

1.webp

2.6. Visualizing metrics using Grafana

Now that Prometheus successfully collects the metrics, you’ll continue by visualizing the data using Grafana. For that, you’ll need to first start it by adding a Grafana container to your docker-compose file.

version: '3.1'services:grafana:image: grafana/grafana:latestcontainer_name: grafanaports:- "3000:3000"volumes:- grafana-storage:/var/lib/grafanagolang:build:context: ./dockerfile: Dockerfilecontainer_name: golangrestart: alwaysports:- '9000:9000'prometheus:image: prom/prometheus:v2.24.0volumes:- ./prometheus/:/etc/prometheus/- prometheus_data:/prometheuscommand:- '--config.file=/etc/prometheus/prometheus.yml'- '--storage.tsdb.path=/prometheus'- '--web.console.libraries=/usr/share/prometheus/console_libraries'- '--web.console.templates=/usr/share/prometheus/consoles'ports:- 9090:9090restart: alwaysvolumes:grafana-storage:prometheus_data:

After adding the Grafana container and a volume that will save the Grafana configurations and data you can restart docker-compose.

docker-compose up -d

Now that Grafana is started you can access it by visiting http://localhost:3000 in your browser. It will ask you to enter user credentials which defaults are admin as a username and password.

2.webp

After logging in, you can create a new data source by navigating to Configuration>Data Source and clicking “Add data source”. After that, select Prometheus and then fill in the necessary information.

3.webp

Once the data source has been successfully added, you can continue by creating a new dashboard to visualize your metrics.

4.webp

The dashboard consists of panels that let you visualize metrics, so click “Add panel” to start.

5.webp

Now you can select a metric by specifying it in the metric field: e.g. http_requests_total.

6.webp

Your dashboard might not display as much data as mine since you have not accessed the application that often. The best way to get more data for testing is using a load testing tool.

I enjoy using the hey load testing tool, an open-source CLI application for load generation, but you can also use other tools. Once you downloaded hey you can generate traffic using the following command.

hey -z 5m -q 5 -m GET -H "Accept: text/html" http://127.0.0.1:9000

You can now experiment with the dashboard by adding other panels with metrics and customize it to your liking. If you want an example dashboard that visualizes all the metrics we have implemented, you can download it from Github and then import it.

7.webp

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/86563.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

写一个函数返回参数二进制中 1 的个数(c语言三种实现方法)

&#xff08;本文旨在自己做题时的总结&#xff0c;我会给出不同的解法&#xff0c;后面如果碰到新的题目还会加入其中&#xff0c;等于是我自己的题库。 1.写一个函数返回参数二进制中 1 的个数。 比如&#xff1a; 15 0000 1111 4 个 1 方法一&#xff1a; #include…

基于 eclipse-temurin 镜像部署spring boot 应用

基于 eclipse-temurin 镜像部署spring boot 应用 使用场景示例项目 使用场景 在CI流程中&#xff0c;一般都会集成 打包&#xff0c;构建镜像&#xff0c;分发&#xff0c;启动容器之类的流程&#xff1b; 这里提供一个示例&#xff0c;进攻参考 示例项目 项目结构如下 run…

Django基础

1.Django基础 路由系统视图模板静态文件和媒体文件中间件ORM&#xff08;时间&#xff09; 2.路由系统 本质上&#xff1a;URL和函数的对应关系。 2.1 传统的路由 from django.contrib import admin from django.urls import path from apps.web import viewsurlpatterns …

体渲染原理及WebGL实现【Volume Rendering】

体渲染&#xff08;Volume Rendering&#xff09;是NeRF神经场辐射AI模型的基础&#xff0c;与传统渲染使用三角形来显示 3D 图形不同&#xff0c;体渲染使用其他方法&#xff0c;例如体积光线投射 (Volume Ray Casting)。本文介绍体渲染的原理并提供Three.js实现代码&#xff…

【Nginx】Nginx网站服务

国外主流还是使用apache&#xff1b;国内现在主流是nginx&#xff08;并发能力强&#xff0c;相对稳定&#xff09; nginx&#xff1a;高新能、轻量级的web服务软件 特点&#xff1a; 1.稳定性高&#xff08;没apache稳&#xff09;&#xff1b; 2.系统资源消耗比较低&#xf…

Windows电脑快速搭建FTP服务教程

FTP介绍 FTP&#xff08;File Transfer Protocol&#xff09;是一种用于在计算机网络上进行文件传输的标准协议。它提供了一种可靠的、基于客户端-服务器模型的方式来将文件从一个主机传输到另一个主机。在本文中&#xff0c;我将详细介绍FTP的工作原理、数据传输模式以及常见…

从Spring源码看Spring如何解决循环引用的问题

Spring如何解决循环引用的问题 关于循环引用&#xff0c;首先说一个结论&#xff1a; Spring能够解决的情况为&#xff1a;两个对象都是单实例、且通过set方法进行注入。 两个对象都是单实例&#xff0c;通过构造方法进行注入&#xff0c;Spring不能进行循环引用问题&#x…

分布式问题

1. 分布式系统CAP原理 CAP原理&#xff1a;指在一个分布式系统中&#xff0c;Consistency&#xff08;一致性&#xff09;、Availability&#xff08;可用性&#xff09;、Partitontolerance&#xff08;分区容忍性&#xff09;&#xff0c;三者不可得兼。 一致性&#xff08;C…

DVWA暴力破解高级模式宏爆破

先将安全等级调至高级&#xff0c;点击submit提交 浏览器开启bp代理 kali开启bp 工具&#xff0c;开启Proxy 点击Brute Force这个选项卡 bp拦截到请求的数据包 宏设置 如果是有的bp版本比较旧&#xff0c;在旧版本的上面菜单栏有一个Project options点击去选择Session&#xff…

智能优化算法:白鲨优化算法-附代码

智能优化算法&#xff1a;白鲨优化算法 文章目录 智能优化算法&#xff1a;白鲨优化算法1.白鲨优化算法1.1 初始化1.2 速度更新1.3位置更新1.4鱼群行为 2.实验结果3.参考文献4.Matlab5.python 摘要&#xff1a;WSO 算法是 Braik 等于 2022 年提出一种基于白鲨深海觅食策略的新型…

算法与数据结构(二十二)动态规划解题套路框架

动态规划解题套路框架 此文只在个人总结 labuladong 动态规划框架&#xff0c;仅限于学习交流&#xff0c;版权归原作者所有&#xff1b; 动态规划问题&#xff08;Dynamic Programming&#xff09;应该是很多读者头疼的&#xff0c;不过这类问题也是最具有技巧性&#xff0c…

计算机网络实验2:网络嗅探

文章目录 1. 主要教学内容2. Wireshark介绍3. Wireshark下载4. 使用Wireshark捕获包4.1 选择网卡4.2 停止抓包4.3 保存数据 5. Wireshark的过滤规则6. Wireshark实例 1. 主要教学内容 实验内容&#xff1a;安装、学习使用网络包分析工具Wireshark。所需学时&#xff1a;1。重难…

基于概率神经网络的变压器故障诊断

1.案例背景 1.1 PNN概述 概率神经网络(probabilistic neural networks. PNN)是 D.F.Specht博士在1989年首先提出的,是一种基于Bayes分类规则与Parzen窗的概率密度函数估计方法发展而来的并行算法。它是一类结构简单、训练简洁,应用广泛的人工神经网络。在实际应用中,尤其是在解…

纯鸿蒙!华为HarmonyOS NEXT不再兼容安卓应用,无法安装Apk文件

8月7日消息&#xff0c;近日&#xff0c;华为举行2023年华为开发者大会&#xff08;HDC.Together&#xff09;上&#xff0c;除了发布HarmonyOS 4、全新升级的鸿蒙开发套件外&#xff0c;华为还带来了HarmonyOS NEXT开发者预览版。 据了解&#xff0c;HarmonyOS NEXT开发者预览…

豪越HYDO智能运维助力智慧医院信息化建设

随着国家政策的推动与支持&#xff0c;医疗行业信息化应用不断普及&#xff0c;大数据、AI、医疗物联网等技术的应用&#xff0c;快速推动了电子病历、智慧服务、智慧管理的智慧医院建设和医院信息标准化建设&#xff0c;通过不断探索创新“智慧医院”服务模式&#xff0c;实现…

FLatten Transformer 简化版Transformer

今天在找论文时&#xff0c;看到一篇比较新奇的论文&#xff0c;在这里跟大家分享一下&#xff0c;希望可以给一些人提供一些思路。虽然现在Transformer 比较火&#xff0c;在分割上面也应用的比较多&#xff0c;但是我一直不喜欢用&#xff0c;其中一个原因是结构太复杂了&…

Linux平台下搭建GB28181服务器(WVP+ZLMediakit)

文章目录 什么是GB28181平台依赖项搭建步骤配置Redis和MySQL配置ZLMediakit配置WVP 使用效果封装成Docker镜像 什么是GB28181 GB28181(国标28181)&#xff0c;全称为《中华人民共和国公共安全视频监控联网系统技术要求》&#xff0c;是中国国家标准委员会发布的一个针对公共安…

LeetCode面向运气之Javascript—第121题-买卖股票的最佳时机-97.77%

LeetCode第121题-买卖股票的最佳时机 题目要求 给定一个数组prices &#xff0c;它的第i个元素prices[i]表示一支给定股票第i天的价格。 你只能选择某一天买入这只股票&#xff0c;并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回…

面试题:ArrayList扩容时扩容多少?

大家好&#xff0c;我是你们的小米&#xff01;今天要和大家一起来探讨一个在Java面试中经常被问到的问题&#xff1a;“ArrayList扩容时扩容多少&#xff1f;”相信很多小伙伴都在面试中遇到过这个问题&#xff0c;那么接下来&#xff0c;我就为大家详细解析一下这个问题&…

OpenCV实例(八)车牌字符识别技术(三)汉字识别

车牌字符识别技术&#xff08;三&#xff09;汉字识别 1.代码实例2.遇到问题3.汉字识别代码实例 相较于数字和英文字符的识别&#xff0c;汽车牌照中的汉字字符识别的难度更大&#xff0c;主要原因有以下4个方面&#xff1a; (1)字符笔画因切分误差导致非笔画或笔画流失。 (2…