【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现)

ECANet(Efficient Channel Attention Network)是一种用于图像处理任务的神经网络架构,它在保持高效性的同时,有效地捕捉图像中的通道间关系,从而提升了特征表示的能力。ECANet通过引入通道注意力机制,以及在卷积层中嵌入该机制,取得了优越的性能。本文将对ECANet的核心思想、结构以及优势进行详细讲解。

1. 核心思想

ECANet的核心思想是在卷积操作中引入通道注意力机制,以捕捉不同通道之间的关系,从而提升特征表示的能力。通道注意力机制的目标是自适应地调整通道特征的权重,使得网络可以更好地关注重要的特征,抑制不重要的特征。通过这种机制,ECANet能够在不增加过多参数和计算成本的情况下,有效地增强网络的表征能力。

2. 结构

ECANet的结构主要分为两个部分:通道注意力模块嵌入式通道注意力模块

在这里插入图片描述

  • 通道注意力模块

通道注意力模块是ECANet的核心组成部分,它的目标是根据通道之间的关系,自适应地调整通道特征的权重。该模块的输入是一个特征图(Feature Map),通过全局平均池化得到每个通道的全局平均值,然后通过一组全连接层来生成通道注意力权重。这些权重被应用于输入特征图的每个通道,从而实现特征图中不同通道的加权组合。最后,通过一个缩放因子对调整后的特征进行归一化,以保持特征的范围。

  • 嵌入式通道注意力模块

嵌入式通道注意力模块是ECANet的扩展部分,它将通道注意力机制嵌入到卷积层中,从而在卷积操作中引入通道关系。这种嵌入式设计能够在卷积操作的同时,进行通道注意力的计算,减少了计算成本。具体而言,在卷积操作中,将输入特征图划分为多个子特征图,然后分别对每个子特征图进行卷积操作,并在卷积操作的过程中引入通道注意力。最后,将这些卷积得到的子特征图进行合并,得到最终的输出特征图。

实现机制:

  • 通过全剧平均池化层,将每个通道大的二维特征(h*w)压缩为一个实数, 特征图维变化: (C, H, W) -> (C, 1, 1)

  • 计算得到自适应的一维卷积核的kernel_size,计算公式如下:

在这里插入图片描述

其中
b = 1 γ = 2 C 为通道数 b = 1 \\ \gamma = 2\\ C为通道数 b=1γ=2C为通道数

  • 将kernel_size = k的一维卷积核(一维same核)用于特征图,得到每个通道的权重向量, 维度变化(C, 1, 1) -> (C, 1, 1).
  • 将归一化后的权重加权乘以输入特征图 (C, H, W) * (C, 1, 1) -> (C, H, W)

3. 优势

ECANet的设计在以下几个方面具有优势:

  • 高效性

ECANet通过嵌入式通道注意力模块,在保持高效性的同时,引入了通道注意力机制。这使得网络能够在不增加过多计算成本的情况下,提升特征表示的能力。

  • 提升特征表示

通道注意力机制能够自适应地调整通道特征的权重,使得网络能够更好地关注重要的特征。这种机制有助于提升特征的判别能力,从而提升了网络的性能。

  • 减少过拟合

通道注意力机制有助于抑制不重要的特征,从而减少了过拟合的风险。网络更加关注重要的特征,有助于提高泛化能力。

4. 代码实现

class ECANet(nn.Module):def __init__(self, in_channels, gamma=2, b=1):super(ECANet, self).__init__()self.in_channels = in_channelsself.fgp = nn.AdaptiveAvgPool2d((1, 1))kernel_size = int(abs((math.log(self.in_channels, 2) + b) / gamma))kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1self.con1 = nn.Conv1d(1,1,kernel_size=kernel_size,padding=(kernel_size - 1) // 2,bias=False)self.act1 = nn.Sigmoid()def forward(self, x):output = self.fgp(x)output = output.squeeze(-1).transpose(-1, -2)output = self.con1(output).transpose(-1, -2).unsqueeze(-1)output = self.act1(output)output = torch.multiply(x, output)return output

总结

ECANet是一种高效的神经网络架构,通过引入通道注意力机制,能够有效地捕捉图像中的通道关系,提升特征表示的能力。它的结构包括通道注意力模块和嵌入式通道注意力模块,具有高效性、提升特征表示和减少过拟合等优势。通过这种设计,ECANet在图像处理任务中取得了优越的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/86769.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【脚踢数据结构】深入理解栈

(꒪ꇴ꒪ ),Hello我是祐言QAQ我的博客主页:C/C语言,Linux基础,ARM开发板,软件配置等领域博主🌍快上🚘,一起学习,让我们成为一个强大的攻城狮!送给自己和读者的一句鸡汤🤔&…

【BI系统】选型常见问题解答二

本文主要总结BI系统选型过程中遇见的常见问题,并针对性做出回答,希望能为即将选型,或正在选型BI系统的企业用户们提供一个快速了解通道。 有针对金蝶云星空的BI方案吗?能起到怎样的作用? 答:奥威BI系统拥…

小内存嵌入式设备软件的差分升级设计(学习)

摘要 提出一种改进HDiffPatch算法并在复旦微单片机上实现小内存差分升级的方案,即使用单片机内的Flash空间替代算法占用的RAM空间,从而减少算法对单片机RAM空间的需求,以满足小内存微处理器的差分升级,同时对算法内存分配释放函数…

关于pycharm安装出现的interpreter field is empty,无法创建项目存储位置

关于pycharm安装出现的interpreter field is empty(解释器为空) 关于pycharm安装出现的interpreter field is empty,无法创建项目存储的位置。如图: 我之前安装的时候一直老是有这个提示,后来才发现是因为没安装这个p…

干货满满的Python知识,学会这些你也能成为大牛

目录 1. 爬取网站数据 2. 数据清洗与处理 3. 数据可视化 4. 机器学习模型训练 5. 深度学习模型训练 6. 总结 1. 爬取网站数据 在我们的Python中呢,使用爬虫可以轻松地获取网站的数据。可以使用urllib、requests、BeautifulSoup等库进行数据爬取和处理。以下是…

案例12 Spring MVC入门案例

网页输入http://localhost:8080/hello&#xff0c;浏览器展示“Hello Spring MVC”。 1. 创建项目 选择Maven快速构建web项目&#xff0c;项目名称为case12-springmvc01。 2.配置Maven依赖 <?xml version"1.0" encoding"UTF-8"?><project xm…

nacos原理

不要纠结于具体代码&#xff0c;随着版本变化源码多变&#xff0c;要学习的是基本原理和思想&#xff1b; Nacos注册中心实现原理分析 Nacos架构图 其中分为这么几个模块&#xff1a; Provider APP&#xff1a;服务提供者。 Consumer APP&#xff1a;服务消费者。 Name Serv…

k8s之StorageClass(NFS)

一、前言 1、环境 k8s v1.23.5 &#xff0c;服务器是centos7.9 192.168.164.20 k8s-master1 192.168.164.30 k8s-node1 192.168.164.40 k8s-node2 2、貌似storageClass在kubernetes v1.20就被砍了。 因为它比较慢&#xff0c;而且耗资源&#xff0c;但可以通过不同的实现镜…

Java并发机制的底层实现原理

一、前置知识 缓存一致性协议&#xff1a;每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了&#xff0c;当处理器发现自己缓存行对应的内存地址被修改&#xff0c;就会将当前处理器的缓存行设置成无效状态&#xff0c;当处理器对这个数据进行修改操作的时…

selenium常见等待机制及其特点和使用方法

目录 1、强制等待 2、隐式等待 3、显示等待 1、强制等待 强制等待是在程序中直接调用Thread.sleep(timeout) ,来完成的&#xff0c;该用法的优点是使用起来方便&#xff0c;语法也比较简单&#xff0c;缺点就是需要强制等待固定的时间&#xff0c;可能会造成测试的时间过…

“探索计算机世界:进程的基本概念与功能“

文章目录 前言什么是进程如何描述进程进程的属性1. 进程标识符2. 内存指针3. 文件描述符表4. 进程的状态5. 优先级6. 上下文7. 记账信息 内存分配并行和并发 前言 作为程序员&#xff0c;理解计算机的组成以及计算机是怎样运行的是很重要的&#xff0c;因为只有了解计算机我们…

Jenkins 使用

Jenkins 使用 文章目录 Jenkins 使用一、jenkins 任务执行二、 Jenkins 连接gitee三、Jenkins 部署静态网站 一、jenkins 任务执行 jenkins 创建 job job的名字最好是有意义的 restart_web_backend restart_web_mysql[rootjenkins ~]# ls /var/lib/jenkins/ config.xml …

QT--崩溃原因分析

本文为学习记录&#xff0c;若有错误&#xff0c;请联系作者&#xff0c;谦虚受教。 文章目录 前言一、目的二、实现步骤1 add2line.exe2 分析文件3 crash文件 三、相关代码1 pro文件2.ccrashstack.h3.ccrashstack.cpp4.main.cpp 总结 前言 你从来来去自由&#xff0c;若你不想…

大模型时代,如何重塑AI人才的培养?知名高校专家为您解答

当下&#xff0c;随着人工智能技术的快速发展&#xff0c;大模型已经成为了人工智能发展的新方向&#xff0c;同时也对新时代AI人才的需求和培养带来了新的思考与挑战&#xff0c;需要结合当下社会对复合型AI人才的需求进行新思考&#xff0c;创新AI人才培养模式&#xff0c;以…

【ARM64 常见汇编指令学习 15 -- ARM 标志位的学习】

文章目录 ARM 标志位介绍Zero Condition flag(零标志位)零标志位判断实例 上篇文章&#xff1a;ARM64 常见汇编指令学习 14 – ARM 汇编 .balign,.balignw,.balign 伪指令学习 下篇文章&#xff1a;ARM64 常见汇编指令学习 16 – ARM64 SMC 指令 ARM 标志位介绍 在ARM架构中&am…

深度对话|如何设计合适的网络经济激励措施

近日&#xff0c;我们与Mysten Labs的首席经济学家Alonso de Gortari进行了对话&#xff0c;讨论了如何在网络运营商和参与者之间找到激励措施的平衡&#xff0c;以及Sui的经济如何不断发展。 是什么让您选择将自己的经济学背景应用于区块链和Web3领域&#xff1f; 起初&…

YOLO相关原理(文件结构、视频检测等)

超参数进化(hyperparameter evolution) 超参数进化是一种使用了genetic algorithm&#xff08;GA&#xff09;遗传算法进行超参数优化的一种方法。 YOLOv5的文件结构 images文件夹内的文件和labels中的文件存在一一对应关系 激活函数&#xff1a;非线性处理单元 activation f…

爬虫014_文件操作_打开关闭_读写_序列化_反序列化---python工作笔记033

报错,没有指定路径,没有指定路径无法创建文件 这样可以在当前目录下创建一个可写的文件 可以看到找到刚才生成的文件,看看内容

探讨uniapp的navigator 页面跳转问题

navigator 页面跳转。该组件类似HTML中的<a>组件&#xff0c;但只能跳转本地页面。目标页面必须在pages.json中注册。 "tabBar": {"color": "#7A7E83","selectedColor": "#3cc51f","borderStyle": "bl…