Python-OpenCV中的图像处理-傅里叶变换

Python-OpenCV中的图像处理-傅里叶变换

  • 傅里叶变换
    • Numpy中的傅里叶变换
    • Numpy中的傅里叶逆变换
    • OpenCV中的傅里叶变换
    • OpenCV中的傅里叶逆变换
  • DFT的性能优化
  • 不同滤波算子傅里叶变换对比

傅里叶变换

  • 傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT 的一个快速算法被称为快速傅里叶变换( FFT)。
  • 对于一个正弦信号:x (t) = A sin (2πft), 它的频率为 f,如果把这个信号转到它的频域表示,我们会在频率 f 中看到一个峰值。如果我们的信号是由采样产生的离散信号组成,我们会得到类似的频谱图,只不过前面是连续的,现在是离散。你可以把图像想象成沿着两个方向采集的信号。所以对图像同时进行 X 方向和 Y 方向的傅里叶变换,我们就会得到这幅图像的频域表示(频谱图)。
  • 对于一个正弦信号,如果它的幅度变化非常快,我们可以说他是高频信号,如果变化非常慢,我们称之为低频信号。你可以把这种想法应用到图像中,图像那里的幅度变化非常大呢?边界点或者噪声。所以我们说边界和噪声是图像中的高频分量(注意这里的高频是指变化非常快,而非出现的次数多)。如果没有如此大的幅度变化我们称之为低频分量。

Numpy中的傅里叶变换

Numpy 中的 FFT 包可以帮助我们实现快速傅里叶变换。函数 np.fft.fft2() 可以对信号进行频率转换,输出结果是一个复杂的数组。本函数的第一个参数是输入图像,要求是灰度格式。第二个参数是可选的, 决定输出数组的大小。输出数组的大小和输入图像大小一样。如果输出结果比输入图像大,输入图像就需要在进行 FFT 前补0。如果输出结果比输入图像小的话,输入图像就会被切割。
f = np.fft.fft2(img)
现在我们得到了结果,频率为 0 的部分(直流分量)在输出图像的左上角。如果想让它(直流分量)在输出图像的中心,我们还需要将结果沿两个方向平移 N/2 。函数 np.fft.fftshift() 可以帮助我们实现这一步。(这样更容易分析)。进行完频率变换之后,我们就可以构建振幅谱了。
fshift = np.fft.fftshift(f)

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)# 构建振幅图
magnitude_spectrum = 20*np.log(np.abs(fshift))plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Input Image')
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray'), plt.title('Magnitude Spectrum')
plt.show()

在这里插入图片描述
我们可以看到输出结果的中心部分更白(亮),这说明低频分量更多。

Numpy中的傅里叶逆变换

  • 对图像进行FFT变换之后得到频域图像数据,然后再做IFFT变换又可以得到原始图像。相关函数:np.fft.ifftshift(),np.fft.ifft2()
    fishift = np.fft.ifftshift(fshift)
    img_ifft = np.fft.ifft2(fishift)
  • 我们可以对频域图像数据进行操作以实现一些图像处理效果,如在频域内将低频分量的值设为0,可以实现对图像的高通滤波处理:
    rows, cols = img.shape
    crow, ccol = int(rows/2) , int(cols/2)
    fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)# 1.在Numpy内对图像进行傅里叶变换,得到其频域图像
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
# 这里是构建振幅图,显示图像频谱
magnitude_spectrum = 20*np.log(np.abs(fshift))# 2.IFFT 将频域图像还原成原始图像,这里只是验证FFT的逆运算
fishift = np.fft.ifftshift(fshift)
img_ifft = np.fft.ifft2(fishift)
img_ifft = np.abs(img_ifft) # 取绝对值,否则不能用imshow()来显示图像# 3.在频域内将低频分量的值设为0,实现高通滤波。
rows, cols = img.shape 
crow, ccol = int(rows/2) , int(cols/2) 
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0 # 4.对高通滤波后的图像频域数据进行逆傅里叶变换,得到高通滤波后图像。
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back) # 取绝对值,否则不能用imshow()来显示图像
# 构建高通滤波后的振幅图,显示图像频谱
after_sepctrum = 20*np.log(np.abs(fshift))plt.subplot(231), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(232), plt.imshow(magnitude_spectrum, cmap='gray'), plt.title('Input Image Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(233), plt.imshow(img_ifft, cmap='gray'), plt.title('Input IFFT'), plt.xticks([]), plt.yticks([])
plt.subplot(234), plt.imshow(after_sepctrum, cmap='gray'), plt.title('After HPF Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(235), plt.imshow(img_back, cmap='gray'), plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.subplot(236), plt.imshow(img_back), plt.title('Result in JET'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

OpenCV中的傅里叶变换

OpenCV 中相应的函数是 cv2.dft() 和 cv2.idft()。和前面输出的结果一样,但是是双通道的。第一个通道是结果的实数部分,第二个通道是结果的虚数部分。输入图像要首先转换成 np.float32 格式。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray'), plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

OpenCV中的傅里叶逆变换

前面的部分我们实现了一个 HPF(高通滤波)高通滤波其实是一种边界检测操作。现在我们来做 LPF(低通滤波)将高频部分去除。其实就是对图像进行模糊操作。首先我们需要构建一个掩模,与低频区域对应的地方设置为 1, 与高频区域对应的地方设置为 0。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
# 1.OpenCV中做DFT
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape
crow, ccol = int(rows/2), int(cols/2)# create a mask first, center square is 1, remaining all zeros
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1# apply mask and inverse DFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0], img_back[:,:,1])plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray'), plt.title('Output Image'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

DFT的性能优化

  • 当数组的大小为某些值时 DFT 的性能会更好。当数组的大小是 2 的指数时 DFT 效率最高。当数组的大小是 2, 3, 5 的倍数时效率也会很高。所以如果你想提高代码的运行效率时,你可以修改输入图像的大小(补 0)。对于OpenCV 你必须自己手动补 0。但是 Numpy,你只需要指定 FFT 运算的大小,它会自动补 0。
  • OpenCV 提供了一个函数:cv2.getOptimalDFTSize()来确定最佳大小。它可以同时被 cv2.dft() 和 np.fft.fft2() 使用。
import numpy as np
import cv2img = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
rows,cols = img.shape
print('原始图像大小:',rows, cols)
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
print('DFT最佳大小:',nrows, ncols)

原始图像大小: 342 548
DFT最佳大小: 360 576

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
rows,cols = img.shape
print('原始图像大小:',rows, cols)
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
print('DFT最佳大小:',nrows, ncols)# Numpy数组操作,原图扩大到最佳DFT size
nimg = np.zeros((nrows, ncols))
nimg [:rows, :cols] = img# 
right = ncols - cols
bottom = nrows - rows
# just to avoid line breakup in PDF file
mimg = cv2.copyMakeBorder(img, 0, bottom, 0, right, cv2.BORDER_CONSTANT, value=0)plt.subplot(231), plt.imshow(img, cmap='gray')
plt.subplot(232), plt.imshow(nimg, cmap='gray')
plt.subplot(233), plt.imshow(mimg, cmap='gray')
plt.show()

在这里插入图片描述

不同滤波算子傅里叶变换对比

为什么拉普拉斯算子是高通滤波器?为什么 Sobel 是 HPF?等等。对于第一个问题的答案我们以傅里叶变换的形式给出。我们一起来对不同的算子进行傅里叶变换并分析它们:

import numpy as np
import cv2
from matplotlib import pyplot as plt# simple averaging filter whitout scaling parameter
mean_filter = np.ones((3,3))# creating a guassian filter
x = cv2.getGaussianKernel(5, 10)
# x.T 为矩阵转置
gaussian = x*x.T# different edge detecting filters
# scharr in x-direction
scharr = np.array([[-3, 0, 3],[-10, 0, 10],[-3, 0, 3]])# sobel in x direction
sobel_x = np.array([[-1, 0, 1],[-2, 0, 2],[-1, 0, 1]])# sobel in y direction
sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])# laplacian
laplacian = np.array([[0, 1, 0], [1, -4, 1],[0, 1, 0]])filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
filter_name = ['mean_filter', 'gaussian', 'laplacian', 'sobel_x', 'sobel_y', 'scharr_x']fft_filters = [np.fft.fft2(x) for x in filters]
fft_shift = [np.fft.fftshift(y) for y in fft_filters]
mag_spectrum = [np.log(np.abs(z)+1) for z in fft_shift]for i in range(6):plt.subplot(2,3,i+1), plt.imshow(mag_spectrum[i], cmap='gray')plt.title([filter_name[i]]), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/88474.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【分布式系统】聊聊高性能设计

每个程序员都应该知道的数字 高性能 对于以上的数字,其实每个程序员都应该了解,因为只有了解这些基本的数字,才能知道对于CPU、内存、磁盘、网络之间数据读写的时间。1000ms 1S。毫秒->微秒->纳秒-秒->分钟 为什么高性能如此重要的…

单体版ruoyi代码生成增删改查

目录 拉取代码 打开代码,新建一个模块,模块放我们的项目后台数据库的curd代码。 我们的新模块引入ruoyi的通用模块 ruoyi的adm引入我们的项目依赖,引用我们的模型、service、mapper 将我们的模块注入父项目 打开ruoyi-adm配置MyBatis&…

Spannable配合AnimationDrawable实现TextView中展示Gif图片

辣的原理解释,反正大家也不爱看,所以直接上代码了 长这样,下面两个图是gif,会动的。 package com.example.myapplication;import android.content.Context; import android.graphics.Bitmap; import android.graphics.drawable…

初步制作做一个AI智能工具网站,持续更新

文章目录 介绍AI对话AI绘画AI音视频AI图片处理AI小工具体验 介绍 网页有五大部分:AI对话、AI绘画、AI音视频、AI 图片处理、AI小工具。 AI对话 AI对话是指人工智能技术在模拟人类对话交流方面的应用。通过使用自然语言处理和机器学习算法,AI对话系统可…

Python爬虫-抓取的目标数据为#x开头,怎么解决?

前言 本文是该专栏的第4篇,后面会持续分享python爬虫案例干货,记得关注。 在做爬虫项目的时候,有时候抓取的平台目标数据为&#x开头,如下图所示: 浏览器显示的正常数据,但通过爬虫协议获取到的网页源码数据却是以&#x开头的隐藏数据,遇到这种情况,爬虫需要怎么处…

百度资深PMO阚洁受邀为第十二届中国PMO大会演讲嘉宾

百度在线网络技术(北京)有限公司资深PMO阚洁女士受邀为由PMO评论主办的2023第十二届中国PMO大会演讲嘉宾,演讲议题:运筹于股掌之间,决胜于千里之外 —— 360斡旋项目干系人。大会将于8月12-13日在北京举办,…

详解C语言中的int8_t、uint8_t、int16_t、uint16_t、int32_t、uint32_t、int64_t、uint64_t

2023年8月8日,周二上午 目录 为什么会产生int8_t、uint8_t等这类数据类型int8_t、uint8_t等这类数据类型有什么用头文件int8_t、uint8_t等这类数据类型是怎么实现的 为什么会产生int8_t、uint8_t等这类数据类型 根本原因在于,C 语言标准只是规定了各个…

day6 STM32时钟与定时器

STM32时钟系统的概述 概念 时钟系统是由振荡器(信号源)、定时唤醒器、分频器等组成的电路。 常用的信号有晶体振荡器和RC振荡器。 意义 时钟是嵌入式系统的脉搏,处理器内核在时钟驱动下完成指令执行,状态变换等动作&#xff…

pytest fixture 高级使用

一、fixture中调用fixture 举例: 输出: 说明:登录fixture 作为参数传递到登出方法中,登录方法的返回值就可以被登出方法使用 二、在fixture中多参数的传递(通过被调用函数传参) 举例: 输出&a…

Kafka 01——Kafka的安装及简单入门使用

Kafka 01——Kafka的安装及简单入门使用 1. 下载安装1.1 JDK的安装1.2 Zookeeper的安装1.2.1 关于Zookeeper版本的选择1.2.2 下载、安装Zookeeper 1.3 kafka的安装1.3.1 下载1.3.2 解压1.3.3 修改配置文件 2. 启动 kafka2.1 Kafka启动2.2 启动 kafka 遇到的问题2.2.1 问题12.2.…

《高性能MySQL》——查询性能优化(笔记)

文章目录 六、查询性能优化6.1 查询为什么会慢6.2 慢查询基础:优化数据访问6.2.1 是否向数据库请求了不需要的数据查询不需要的记录多表关联时返回全部列总是取出全部列重复查询相同的数据 6.2.2 MySQL 是否在扫描额外的记录响应时间扫描的行数与返回的行数扫描的行…

项目实战 — 消息队列(8){网络通信设计①}

目录 一、自定义应用层协议 🍅 1、格式定义 🍅 2、准备工作 🎄定义请求和响应 🎄 定义BasicArguments 🎄 定义BasicReturns 🍅 2、创建参数类 🎄 交换机 🎄 队列 &#x1f38…

Linux常用命令学习总结

Linux命令分类 1. Linux目录操作命令2. Linux文件名称3. Linux磁盘命令4. Linux进程与防火墙5. Linux用户与组的关系6. Linux权限操作(chmod命令)7. Linux中的文件类型文件所有者修改 最近系统地学习下Linux命令的使用,因此作如下记录,以便随时复习和翻阅…

windows 安装免费3用户ccproxy ubuntu 代理上网

Windows 上进行安装 ubuntu 上进行设置 方法一 (临时的手段) 如果仅仅是暂时需要通过http代理使用apt-get,您可以使用这种方式。 在使用apt-get之前,在终端中输入以下命令(根据您的实际情况替换yourproxyaddress和proxyport)。 终…

NetSuite 固定资产租赁101

目录 前言 1.新租赁准则的相关内容 1.1 主要变化 1.2 IFRS 16/ASC 842/CAS 21的区别与联系 1.3 新租赁准则实行的意义 2.NetSuite中的租赁功能 2.1 概述 2.2 设置 2.2.1 相关科目设置 2.2.2 资产类型设置 2.3 功能详细说明 2.3.1 案例一 2.3.2 案例二 3.新租赁准则…

ubuntu切换python版本

在没有安装类似anoconda的管理工具的时候,我们常常会被Ubuntu下的Python版本切换问题所头疼。 可以使用update-alternatives工具进行python版本的任意切换 当使用update-alternatives工具来切换Ubuntu系统上的Python版本时,您实际上是在系统范围内选择…

week4刷题

题解: F(n)F(n−1)F(n−2) 由于斐波那契数存在递推关系&#xff0c;因此可以使用动态规划求解。动态规划的状态转移方程即为上述递推关系&#xff0c;边界条件为 F(0)F(0)F(0) 和 F(1)F(1)F(1)。 class Solution { public:int fib(int n) {int MOD 1000000007;if (n < 2)…

6.pip简介,第三方库的安装

引言 使用过Visual Studio的小伙伴可能对npm不陌生,没错,pip与npm的功能是一样的。 首先要知道,Python这门语言拥有着丰富的标准库以及先辈们开发的各种功能强大的第三方库。而今天我们主要学习的呢就是关于Python中的包管理工具。它是Python的默认软件包管理工具,可以方便…

mybatis如何生成和执行动态sql

文章目录 1. 相关代码2. SQL 语句解析流程2.1 XMLStatementBuilder2.2 SqlSource2.3 DynamicContext上下文2.4 SqlNode和组合模式2.5 MappedStatement2.6 解析标签2.6.1 \<include>2.6.2 \<selectKey>2.6.3 处理 SQL 语句 3. 获取真正执行的sql 1. 相关代码 packa…

棒球在国际上的流行·棒球1号位

棒球在国际上的流行 1. 棒球的起源与历史 棒球的起源源于美国。19世纪中叶&#xff0c;由于美国领土的扩张&#xff0c;当时的美国殖民地的印第安人将棒球类游戏&#xff0c;带到了当时的弗吉尼亚州的奥克兰。后来&#xff0c;棒球运动流传到了加利福尼亚州的圣迭戈。早期的棒…