python学opencv|读取图像(四十八)使用cv2.bitwise_xor()函数实现图像按位异或运算

【0】基础定义

按位与运算:两个等长度二进制数上下对齐,全1取1,其余取0。

按位或运算:两个等长度二进制数上下对齐,有1取1,其余取0。

按位取反运算:一个二进制数,0变1,1变0。

按位异或运算: 两个等长度二进制数上下对齐,相同取0,其余取1。

【1】引言

前序已经学习了cv2.bitwise_and()函数、cv2.bitwise_or()函数和cv2.bitwise_not()函数进行图像按位与计算、按位或运算和按位取反运算,相关文章链接为:

python学opencv|读取图像(四十三)使用cv2.bitwise_and()函数实现图像按位与运算-CSDN博客

python学opencv|读取图像(四十四)原理探究:bitwise_and()函数实现图像按位与运算-CSDN博客

python学opencv|读取图像(四十五)增加掩模:使用cv2.bitwise_and()函数实现图像按位与运算-CSDN博客python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算-CSDN博客python学opencv|读取图像(四十五)增加掩模:使用cv2.bitwise_and()函数实现图像按位与运算-CSDN博客

python学opencv|读取图像(四十七)使用cv2.bitwise_not()函数实现图像按位取反运算-CSDN博客

在此基础上,我们再次回到两个图像的操作,使用的函数cv2.bitwise_xor()实现图像在各个像素点BGR值的异或。

【2】官网教程

【2.1】cv2.bitwise_xor()函数

点击下方链接,直达函数cv2.bitwise_xor()的官网教程:

OpenCV: Operations on arrays

官网对函数的说明页面为:

图1  cv2.bitwise_xor()的官网教程

在cv2.bitwise_xor()的官网教程可以看到,函数的参数说明为:

void cv::bitwise_xor     (     InputArray     src1,   #输入图像1
        InputArray     src2,                                     #输入图像2
        OutputArray     dst,                                    #输出图像
        InputArray     mask = noArray() )               #掩模矩阵,单通道二维矩阵

和之前的几个位操作函数一样,在函数cv2.bitwise_xor()中,调用掩模效果对应的掩模矩阵为8位单通道二维矩阵 。

【2.2】np.bitwise_xor()函数

点击下方链接,直达函数np.bitwise_xor()的官网教程:

numpy.bitwise_xor — NumPy v2.2 Manual

代码先后使用cv2.bitwise_xor()函数和np.bitwise_xor()函数来展示图像按位异或操作的基本原理。

【3】代码测试

参考前述学习进程中调用的代码,按照输入图像-按位异或-输出图像的顺序规划代码。

首先引入相关模块和图像:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcx.png') #读取图像
dst=src #输出图像
gray_src=cv.cvtColor(src,cv.COLOR_BGR2GRAY) #转化为灰度图
dstg=gray_src #输出图像
print('初始图像像素大小为',src.shape)
print('初始图像灰度图像素大小为',gray_src.shape)

然后定义第二张图像和掩模矩阵:

# 定义第二个图像
image = np.zeros(src.shape, np.uint8)  # 定义一个竖直和水平像素与初始图像等大的全0矩阵
print('初始图像像素大小为',src.shape)
image[50:350, :, :] = 180  # 行掩模
image[:,120:200,: ] = 255  # 列掩模
image[:, :, 2] = 120  # 第二个通道值#定义掩模矩阵
mask = np.zeros((gray_src.shape), np.uint8)  # 定义一个竖直和水平像素与初始图像等大的全0矩阵
mask[280:350, :] = 155  # 水平区域
mask[:,150:350] = 100  # 竖直区域

然后执行按位异或计算:

#按位异或运算
img=cv.bitwise_xor(src,image) #异或运算
img2=cv.bitwise_xor(src,image,mask=mask) #异或运算

之后读取特定点BGR值进行按位异或计算验证:

#显示BGR值
print("dst像素数为[300,180]位置处的BGR=", dst[300,180])  # 获取像素数为[100,100]位置处的BGR
print("image像素数为[300,180]位置处的BGR=", image[300,180])  # 获取像素数为[100,100]位置处的BGR
print("img像素数为[300,180]位置处的BGR=", img[300,180])  # 获取像素数为[100,100]位置处的BGR
print("img2像素数为[300,180]位置处的BGR=", img2[300,180])  # 获取像素数为[100,100]位置处的BGRa=np.zeros((1,3),np.uint8) #定义矩阵
a=dst[300,180] #将像素点BGR直接赋值给矩阵
b=np.zeros((1,3),np.uint8) #定义矩阵
b=image[300,180] #将像素点BGR直接赋值给矩阵
c=np.zeros((1,3),np.uint8) #定义矩阵
d=np.zeros((1,3),np.uint8) #定义矩阵
d=image[300,180] #将像素点BGR直接赋值给矩阵
e=np.zeros((1,3),np.uint8) #定义矩阵#二进制按位异或计算
for i in range(3): #计数print('a','[0,',i,']=',a[i],'的二进制转化值=', bin(a[i]), ',b=','[0,',i,']=', b[i],'的二进制转化值=',bin(b[i])) #输出二进制转化值c[0,i]=np.bitwise_xor(a[i],b[i]) #赋值按位异或计算值print('c',[0,i],'是a[0,',i,']和b[0',i,']按位异或的值=',c[0,i]) #输出按位异或计算值print('c','[0,',i,']=',[0,i],'的二进制转化值=', bin(c[0,i]), ',d=','[0,',i,']=', d[i],'的二进制转化值=',bin(d[i])) #输出二进制转化值e[0,i]=np.bitwise_xor(c[0,i],d[i]) #赋值按位与计算值print('e',[0,i],'是c[0,',i,']和d[0',i,']按位异或的值=',e[0,i]) #输出按位异或计算值#输出矩阵结果
print('a=',a) #输出矩阵
print('b=',b) #输出矩阵
print('c=',c) #输出矩阵
print('d=',d) #输出矩阵
print('e=',e) #输出矩阵

然后显示和保存图像:

#合并图像
himg=np.hstack((src,img))
himg2=np.hstack((src,img2))
himg3=np.hstack((img,img2))# 显示和保存定义的图像
cv.imshow('dst', dst)  # 显示图像
cv.imshow('xor-n-mask', img)  # 显示图像
cv.imwrite('xornmask.png', img)  # 保存图像
cv.imshow('xor-w-mask', img2)  # 显示图像
cv.imwrite('xor-w-mask.png', img2)  # 保存图像
cv.imshow('xor-image', image)  # 显示图像
cv.imwrite('xor-image.png', image)  # 保存图像
cv.imshow('xor-mask', mask)  # 显示图像
cv.imwrite('xor-mask.png', mask)  # 保存图像
cv.imshow('ini-xor-n-mask', himg)  # 显示图像
cv.imwrite('ini-xor-n-mask.png', himg)  # 保存图像
cv.imshow('ini-xor-w-mask', himg2)  # 显示图像
cv.imwrite('ini-xor-w-mask.png', himg2)  # 保存图像
cv.imshow('xor-n-w', himg3)  # 显示图像
cv.imwrite('xor-n-w.png', himg3)  # 保存图像
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

代码运行使用的图像有:

图2  初始图像srcx.png

图3 生成的带掩模的第二张图像xor-image.png

图4  掩模矩阵对应图像or-mask.png

图5 图像按位异或效果-不带掩模矩阵xor-n-mask.png

图6 初始图像和图像按位异或效果-不带掩模矩阵ini-xor-n-mask.png

图7 图像按位异或效果-带掩模矩阵xor-w-mask.png

图8 初始图像和图像按位异或效果-带掩模矩阵ini-xor-w-mask.png

图9 图像按位异或效果-不带和带掩模矩阵xor-n-w-mask.png

由图2至图9可知,对图像按位异或操作后,图像的颜色发生了明显变化,添加掩模矩阵后,只在掩模矩阵显示出图像异或操作的图像效果。

然后读取了特定像素点的BGR值:

图10 特定像素点BGR值异或运算验证

图10中,对第一个图像dst和第二个图像image在特定像素点[300,180]读取了BGR值(矩阵a和b),并调用np.bitwise_xor()函数对这两个值进行了按位异或运算(矩阵c)。

之后,又设置了反异或运算,此时的按位异或图像为:上一步获得的按位异或矩阵和第二个图像image。这两个图像(矩阵c和d)在特定像素点[300,180]的BGR值执行了按位异或操作。

图11 反异或运算代码设置

图10中矩阵形式的BGR值读取效果表明,反按位异或操作执行后,获得的矩阵值(矩阵e)和第一个图像的特定像素点取值相等。

综上所述,基于所有运算结果:使用cv2.bitwise_xor()函数执行图像按位异或计算时,各个像素点的BGR值都是按照十进制转二进制、二进制按位异或计算,然后再转回十进制的顺序进行。

图12  cv2.bitwise_xor()函数实现图像带掩模矩阵按位异或计算

【4】细节说明

由于掩模矩阵是单通道二维矩阵,所以掩模本身只会在黑白色之间变化。

【5】总结

掌握了python+opencv实现使用cv2.bitwise_xor()函数实现图像带掩模矩阵按位异或计算的技巧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/8934.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker 学习笔记

一、docker容器快速上手以及简单操作 docker的image和container image镜像 docker image就是一个read.only文件,可以理解成一个模版,docker image具有分层的概念 可以自己制作,也可以从registry拉去 container容器 一个运行中的docker …

【PyTorch】5.张量索引操作

目录 1. 简单行、列索引 2. 列表索引 3. 范围索引 4. 布尔索引 5. 多维索引 个人主页:Icomi 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为…

穿心莲内酯(andrographolide)生物合成CYP72-文献精读106

Two CYP72 enzymes function as Ent-labdane hydroxylases in the biosynthesis of andrographolide in Andrographis paniculata 两种CYP72酶在穿心莲(Andrographis paniculata)中作为Ent-labdane羟化酶,在穿心莲内酯(andrograp…

关于圆周率的新认知 - 2

当未知长度的单位 1 和已完成长度的单位 1 之间的比例不是 1:1 而是其它的数值的时候,不难看出,这时候的圆周率就变成了“椭圆周率”。你可能要说,这不是椭圆积分吗?对了,这就是椭圆积分。但是我们不要考虑什么椭圆积分…

ARM64平台Flutter环境搭建

ARM64平台Flutter环境搭建 Flutter简介问题背景搭建步骤1. 安装ARM64 Android Studio2. 安装Oracle的JDK3. 安装 Dart和 Flutter 开发插件4. 安装 Android SDK5. 安装 Flutter SDK6. 同意 Android 条款7. 运行 Flutter 示例项目8. 修正 aapt2 报错9. 修正 CMake 报错10. 修正 N…

进程池的制作(linux进程间通信,匿名管道... ...)

目录 一、进程间通信的理解 1.为什么进程间要通信 2.如何进行通信 二、匿名管道 1.管道的理解 2.匿名管道的使用 3.管道的五种特性 4.管道的四种通信情况 5.管道缓冲区容量 三、进程池 1.进程池的理解 2.进程池的制作 四、源码 1.ProcessPool.hpp 2.Task.hpp 3…

新年祝词(原创)

新年将至,福进万户。 家家团圆,事事顺心。 喜迎财神,多寿添金。 瑞兽迎春,炮竹声起。 趋吉避凶,蛇年大吉。 中华崛起,人人自强。 天下大同,百姓富足。 有情有义,平易近人。 …

stack 和 queue容器的介绍和使用

1.stack的介绍 1.1stack容器的介绍 stack容器的基本特征和功能我们在数据结构篇就已经详细介绍了,还不了解的uu, 可以移步去看这篇博客哟: 数据结构-栈数据结构-队列 简单回顾一下,重要的概念其实就是后进先出,栈在…

python:洛伦兹变换

洛伦兹变换(Lorentz transformations)是相对论中的一个重要概念,特别是在讨论时空的变换时非常重要。在四维时空的背景下,洛伦兹变换描述了在不同惯性参考系之间如何变换时间和空间坐标。在狭义相对论中,洛伦兹变换通常…

DIY QMK量子键盘

最近放假了,趁这个空余在做一个分支项目,一款机械键盘,量子键盘取自固件名称QMK(Quantum Mechanical Keyboard)。 键盘作为计算机或其他电子设备的重要输入设备之一,通过将按键的物理动作转换为数字信号&am…

【Unity3D】aab包太大无法上传Google问题

目录 一、勾选Split Application Binary,Unity直接打aab包 勾选Split Application Binary选项的影响 不勾选Split Application Binary选项的影响 总结 2、导出Android工程打包aab 一、勾选Split Application Binary,Unity直接打aab包 超出150MB部分…

DeepSeek助力学术文献搜索!

搜集文献 宝子们如果是第一次发表学术论文,论文往往是会署名多个作者。在这种情况下,即便成功发表了论文,独立撰作或主导写作的挑战仍旧存在。那么,怎样才能独立地完成一篇属于自己的学术论文呢?对于初次尝试学术论文…

【时时三省】(C语言基础)文件的随机读写

山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 fseek 根据文件指针的位置和偏移量来定位文件指针 示例: 这个输出的就是ade seek_cur的意思是从当前偏移量 2就是从a往后偏移两个就是d 偏移量 SEEK_CUR…

Python-基于PyQt5,json和playsound的通用闹钟

前言:刚刚结束2024年秋季学期的学习,接下来我们继续来学习PyQt5。由于之前我们已经学习了PyQt5以及PyUIC,Pyrcc和QtDesigner的安装,配置。所以接下来我们一起深入PyQt5,学习如何利用PyQt5进行实际开发-基于PyQt5,json和…

数据结构课程设计(三)构建决策树

3 决策树 3.1 需求规格说明 【问题描述】 ID3算法是一种贪心算法,用来构造决策树。ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的…

2024收尾工作

目录 开场白 栈与队列 LeetCode232. 用栈实现队列 LeetCode225. 用队列实现栈 LeetCode102. 二叉树的层序遍历 LeetCode103. 二叉树的锯齿形层序遍历 堆(优先级队列) 堆排序 LeetCode215. 数组中的第 k 个最大元素 总结 开场白 今天是除夕&…

纯css实现div宽度可调整

<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>纯css实现div尺寸可调整</title><style…

浅谈Linux的发展

目录 1.Linux背景 1.1 发展史 UNIX发展的历史 1.2开源 1.3官网 1.4.企业应用现状 1.5.发行版本 1.6 os概念&#xff0c;定位 1.Linux背景 1.1 发展史 学习Linux系统编程&#xff0c;你可能要问Linux从哪里来&#xff1f;它是怎么发展的&#xff1f;在这里简要介绍Linux的发展史…

四层网络模型

互联网由终端主机、链路和路由器组成&#xff0c;数据通过逐跳的方式&#xff0c;依次经过每条链路进行传输。 网络层的工作是将数据包从源端到目的端&#xff0c;跨越整个互联网。 网络层的数据包称为数据报。网络将数据报交给链路层&#xff0c;指示它通过第一条链路发送数据…

世上本没有路,只有“场”et“Bravo”

楔子&#xff1a;电气本科“工程电磁场”电气研究生课程“高等电磁场分析”和“电磁兼容”自学”天线“、“通信原理”、“射频电路”、“微波理论”等课程 文章目录 前言零、学习历程一、Maxwells equations1.James Clerk Maxwell2.自由空间中传播的电磁波3.边界条件和有限时域…