2025.1.26机器学习笔记:C-RNN-GAN文献阅读

2025.1.26周报

  • 文献阅读
    • 题目信息
    • 摘要
    • Abstract
    • 创新点
    • 网络架构
    • 实验
    • 结论
    • 缺点以及后续展望
  • 总结

文献阅读

题目信息

  • 题目: C-RNN-GAN: Continuous recurrent neural networks with adversarial training
  • 会议期刊: NIPS
  • 作者: Olof Mogren
  • 发表时间: 2016
  • 文章链接:https://arxiv.org/pdf/1611.09904

摘要

生成对抗网络(GANs)目的是生成数据,而循环神经网络(RNNs)常用于生成数据序列。目前已有研究用RNN进行音乐生成,但多使用符号表示。本论文中,作者研究了使用对抗训练生成连续数据的序列可行性,并使用古典音乐的midi文件进行评估。作者提出C-RNN-GAN(连续循环生成对抗网络)这种神经网络架构,用对抗训练来对序列的整体联合概率建模并生成高质量的数据序列。通过在古典音乐midi格式序列上训练该模型,并用音阶一致性和音域等指标进行评估,以验证生成对抗训练是一种可行的训练网络的方法,提出的模型为连续数据的生成提供了新思路。

Abstract

The purpose of Generative Adversarial Networks (GANs) is to generate data, while Recurrent Neural Networks (RNNs) are often used for generating data sequences. Currently, there have been many studies using RNNs for music generation, but most of them employ symbolic representations. In this paper, the authors investigate the feasibility of using adversarial training to generate sequences of continuous data, and evaluate it using classical music MIDI files. They propose the C-RNN-GAN (Continuous Recurrent Neural Network GAN), a neural network architecture that uses adversarial training to model the joint probability of the entire sequence and generate high-quality data sequences. By training this model on classical music MIDI format sequences and assessing it with metrics such as scale consistency and range, the authors demonstrate that adversarial training is a viable method for training networks, and the proposed model offers a new approach for the generation of continuous data.

创新点

本研究创新性在于提出C-RNN-GAN模型,作者采用对抗训练方式处理连续序列数据。作者使用四个实值标量对音乐信号进行生成,此外,还使用了反向传播算法进行端到端训练。

网络架构

提出C-RNN-GAN模型,RNN-GAN 由生成器(Generator)和判别器(Discriminator)两个主要部分组成。
如下图所示:
生成器(G)从随机输入(噪声)生成音乐序列。其包含LSTM层和全连接层。输入为随机噪声输入(如,随机向量);输出是生成的音乐序列。
判别器(D)用于区分生成的音乐序列和真实音乐序列。D由Bi-LSTM(双向长短期记忆网络)组成。输入为真实或生成的音乐序列;输出为一个概率值(表示输入序列是真实音乐的概率)。
在训练中,G与D相互对抗,生成器和判别器交替训练,生成器的目标是欺骗判别器,判别器的目标是准确区分真实和生成的音乐。
在这里插入图片描述
其中G与D的损失函数表达式如下:
L G = 1 m ∑ i = 1 m log ⁡ ( 1 − D ( G ( z ( i ) ) ) ) L_{G}=\frac{1}{m} \sum_{i=1}^{m} \log \left(1-D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) LG=m1i=1mlog(1D(G(z(i))))
L D = 1 m ∑ i = 1 m [ − log ⁡ D ( x ( i ) ) − ( log ⁡ ( 1 − D ( G ( z ( i ) ) ) ) ) ] L_{D}=\frac{1}{m} \sum_{i=1}^{m}\left[-\log D\left(\boldsymbol{x}^{(i)}\right)-\left(\log \left(1-D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)\right)\right] LD=m1i=1m[logD(x(i))(log(1D(G(z(i)))))]
其中, z ( i ) z^{(i)} z(i) [ 0 , 1 ] k [0,1]^{k} [0,1]k 中的均匀随机向量的序列,而 x ( i ) x^(i) x(i) 是来自训练数据的序列,k 表示随机序列中的数据的维数。G 中每个单元格的输入是一个随机向量,与先前单元格的输出串联。.
其实就跟我们之前阅读的GAN差不多,这里就不在赘述了。

实验

从网络收集midi格式的古典音乐文件作为训练数据,训练数据是以midi格式的音乐文件形式从网上收集的,包含着名的古典音乐作品。 每个midi事件被加载并与其持续时间,音调,强度(速度)以及自上一音调开始以来的时间一起保存。音调数据在内部用相应的声音频率表示。所有数据归一化为每秒384点的刻度分辨率。 该数据包含来自160位不同古典音乐作曲家的3697个m​​idi文件,最后作者通过多维度指标评估生成音乐。

实验的模型评估指标:
Polyphony(复音):衡量两个音调同时演奏的频率。
Scale consistency(音阶一致性):通过计算属于标准音阶的音调比例得出,报告最匹配音阶的数值。
Repetitions (重复度):计算样本中的重复程度,仅考虑音调及其顺序,不考虑时间。
Tone span(音域):样本中最低和最高音调之间的半音步数。

模型参数:
生成器(G)和判别器(D)中的LSTM网络深度都为2,每个LSTM单元具有350个隐藏单元。
D双向的,而G是单向的。其中,来自D中的每个LSTM单元的输出被馈送到完全连接的层,其中权重在时间步长上共享,然后每个单元的sigmoid输出被平均化。
此外,在训练中使用反向传播(BPTT)和小批量随机梯度下降。学习率设置为0.1,并且将L2正则化应用于G和D中的权重。模型预训练6个epochs,平方误差损失以预测训练序列中的下一个事件。每个LSTM单元的输入是随机向量v,与前一时间步的输出连接。 v均匀分布在 [ 0 , 1 ] k [0,1]^k [0,1]k 中,并且k被选择为每个音调中的特征数量。在预训练期间,作者使用序列长度的模式,从短序列开始,从训练数据中随机样,最终用越来越长的序列训练模型。

实验结果:
C-RNN-GAN随着训练进行,生成音乐的复杂性增加。独特音调数量有微弱上升趋势,音阶一致性在10-15个周期后趋于稳定。
3音调重复在前25个周期有上升趋势,然后保持在较低水平,其与使用的音调数量相关。
在这里插入图片描述
Baseline(一个类似于生成器的循环网络)变化程度未达到C-RNN-GAN的水平。使用的独特音调数量一直低很多,音阶一致性与C-RNN-GAN相似,但音域与独特音调数量的关系比C-RNN-GAN更紧密,表明其使用的音调变化性更小。
在这里插入图片描述
C-RNN-GAN-3(3的意思是每个LSTM单元三个音调输出)与C-RNN-GAN和Baseline模型相比,获得了更高的复音分数。
在第50 - 55个周期左右达到许多零值输出状态后,在音域、独特音调数量、强度范围和3音调重复方面达到了更高的值。
在这里插入图片描述
真实音乐强度范围与生成音乐相似,音阶一致性略高但变化更大,复音分数与C-RNN-GAN-3相似,3音调重复高很多,但由于歌曲长度不同难以比较(通过除以真实音乐长度与生成音乐长度之比进行了归一化)。
在这里插入图片描述
从实验结果可以看出对抗训练有助于模型学习更多变、音域更广、强度范围更大的音乐。其中,模型每个LSTM单元输出多于一个音调有助于生成复音分数更高的音乐。虽然生成音乐是复音的,但在实验评估的复音分数方面,C-RNN-GAN得分较低,而允许每个LSTM单元同时输出多达三个音调的模型(C-RNN-GAN-3)在复音方面得分更好。虽然样本之间的时间差异较大,但在一首曲子内大致相同。
代码:https://github.com/olofmogren/c-rnn-gan


"""
模型参数:
learning_rate - 学习率的初始值
max_grad_norm - 梯度的最大允许范数
num_layers - LSTM 层的数量
songlength - LSTM 展开的步数
hidden_size - LSTM 单元的数量
epochs_before_decay - 使用初始学习率训练的轮数
max_epoch - 训练的总轮数
keep_prob - Dropout 层中保留权重的概率
lr_decay - 在 "epochs_before_decay" 之后每个轮数的学习率衰减
batch_size - 批量大小
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport time, datetime, os, sys
import pickle as pkl
from subprocess import call, Popenimport numpy as np
import tensorflow as tf
from tensorflow.python.client import timelineimport music_data_utils
from midi_statistics import get_all_statsflags = tf.flags
logging = tf.loggingflags.DEFINE_string("datadir", None, "保存和加载 MIDI 音乐文件的目录")
flags.DEFINE_string("traindir", None, "保存检查点和 gnuplot 文件的目录")
flags.DEFINE_integer("epochs_per_checkpoint", 2, "每个检查点之间进行的训练轮数")
flags.DEFINE_boolean("log_device_placement", False, "输出设备放置的信息")
flags.DEFINE_string("call_after", None, "退出后调用的命令")
flags.DEFINE_integer("exit_after", 1440, "运行多少分钟后退出")
flags.DEFINE_integer("select_validation_percentage", None, "选择作为验证集的数据的随机百分比")
flags.DEFINE_integer("select_test_percentage", None, "选择作为测试集的数据的随机百分比")
flags.DEFINE_boolean("sample", False, "从模型中采样输出。假设训练已经完成。将采样输出保存到文件中")
flags.DEFINE_integer("works_per_composer", None, "限制每个作曲家加载的作品数量")
flags.DEFINE_boolean("disable_feed_previous", False, "在生成器中,将前一个单元的输出作为下一个单元的输入")
flags.DEFINE_float("init_scale", 0.05, "权重的初始缩放值")
flags.DEFINE_float("learning_rate", 0.1, "学习率")
flags.DEFINE_float("d_lr_factor", 0.5, "学习率衰减因子")
flags.DEFINE_float("max_grad_norm", 5.0, "梯度的最大允许范数")
flags.DEFINE_float("keep_prob", 0.5, "保留权重的概率。1表示不使用 Dropout")
flags.DEFINE_float("lr_decay", 1.0, "在 'epochs_before_decay' 之后每个轮数的学习率衰减")
flags.DEFINE_integer("num_layers_g", 2, "生成器 G 中堆叠的循环单元数量")
flags.DEFINE_integer("num_layers_d", 2, "判别器 D 中堆叠的循环单元数量")
flags.DEFINE_integer("songlength", 100, "限制歌曲输入的事件数量")
flags.DEFINE_integer("meta_layer_size", 200, "元信息模块的隐藏层大小")
flags.DEFINE_integer("hidden_size_g", 100, "生成器 G 的循环部分的隐藏层大小")
flags.DEFINE_integer("hidden_size_d", 100, "判别器 D 的循环部分的隐藏层大小,默认与 G 相同")
flags.DEFINE_integer("epochs_before_decay", 60, "开始衰减之前进行的轮数")
flags.DEFINE_integer("max_epoch", 500, "停止训练之前的总轮数")
flags.DEFINE_integer("batch_size", 20, "批量大小")
flags.DEFINE_integer("biscale_slow_layer_ticks", 8, "Biscale 慢层的刻度")
flags.DEFINE_boolean("multiscale", False, "多尺度 RNN")
flags.DEFINE_integer("pretraining_epochs", 6, "进行语言模型风格预训练的轮数")
flags.DEFINE_boolean("pretraining_d", False, "在预训练期间训练 D")
flags.DEFINE_boolean("initialize_d", False, "初始化 D 的变量,无论检查点中是否有已训练的版本")
flags.DEFINE_boolean("ignore_saved_args", False, "告诉程序忽略已保存的参数,而是使用命令行参数")
flags.DEFINE_boolean("pace_events", False, "在解析输入数据时,如果某个四分音符位置没有音符,则插入一个虚拟事件")
flags.DEFINE_boolean("minibatch_d", False, "为小批量增加核特征以提高多样性")
flags.DEFINE_boolean("unidirectional_d", False, "使用单向 RNN 而不是双向 RNN 作为 D")
flags.DEFINE_boolean("profiling", False, "性能分析。在 plots 目录中写入 timeline.json 文件")
flags.DEFINE_boolean("float16", False, "使用 float16 数据类型,否则,使用 float32")
flags.DEFINE_boolean("adam", False, "使用 Adam 优化器")
flags.DEFINE_boolean("feature_matching", False, "生成器 G 的特征匹配目标")
flags.DEFINE_boolean("disable_l2_regularizer", False, "对权重进行 L2 正则化")
flags.DEFINE_float("reg_scale", 1.0, "L2 正则化系数")
flags.DEFINE_boolean("synthetic_chords", False, "使用合成生成的和弦进行训练(每个事件三个音符)")
flags.DEFINE_integer("tones_per_cell", 1, "每个 RNN 单元输出的最大音符数量")
flags.DEFINE_string("composer", None, "指定一个作曲家,并仅在此作曲家的作品上训练模型")
flags.DEFINE_boolean("generate_meta", False, "将作曲家和流派作为输出的一部分生成")
flags.DEFINE_float("random_input_scale", 1.0, "随机输入的缩放比例(1表示与生成的特征大小相同)")
flags.DEFINE_boolean("end_classification", False, "仅在 D 的末尾进行分类。否则,在每个时间步进行分类并取平均值")FLAGS = flags.FLAGSmodel_layout_flags = ['num_layers_g', 'num_layers_d', 'meta_layer_size', 'hidden_size_g', 'hidden_size_d', 'biscale_slow_layer_ticks', 'multiscale', 'multiscale', 'disable_feed_previous', 'pace_events', 'minibatch_d', 'unidirectional_d', 'feature_matching', 'composer']def make_rnn_cell(rnn_layer_sizes,dropout_keep_prob=1.0,attn_length=0,base_cell=tf.contrib.rnn.BasicLSTMCell,state_is_tuple=True,reuse=False):
"""
根据给定的超参数创建一个RNN单元。参数:rnn_layer_sizes:一个整数列表,表示 RNN 每层的大小。dropout_keep_prob:一个浮点数,表示保留任何给定子单元输出的概率。attn_length:注意力向量的大小。base_cell:用于子单元的基础 tf.contrib.rnn.RNNCell。state_is_tuple:一个布尔值,指定是否使用隐藏矩阵和单元矩阵的元组作为状态,而不是拼接矩阵。return:一个基于给定超参数的 tf.contrib.rnn.MultiRNNCell。"""cells = []for num_units in rnn_layer_sizes:cell = base_cell(num_units, state_is_tuple=state_is_tuple, reuse=reuse)cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout_keep_prob)cells.append(cell)cell = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=state_is_tuple)if attn_length:cell = tf.contrib.rnn.AttentionCellWrapper(cell, attn_length, state_is_tuple=state_is_tuple, reuse=reuse)return cell
def restore_flags(save_if_none_found=True):if FLAGS.traindir:saved_args_dir = os.path.join(FLAGS.traindir, 'saved_args')if save_if_none_found:try: os.makedirs(saved_args_dir)except: passfor arg in FLAGS.__flags:if arg not in model_layout_flags:continueif FLAGS.ignore_saved_args and os.path.exists(os.path.join(saved_args_dir, arg+'.pkl')):print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found {} setting from saved state, but using CLI args ({}) and saving (--ignore_saved_args).'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))elif os.path.exists(os.path.join(saved_args_dir, arg+'.pkl')):with open(os.path.join(saved_args_dir, arg+'.pkl'), 'rb') as f:setattr(FLAGS, arg, pkl.load(f))print('{:%Y-%m-%d %H:%M:%S}: saved_args: {} from saved state ({}), ignoring CLI args.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))elif save_if_none_found:print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found no {} setting from saved state, using CLI args ({}) and saving.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))with open(os.path.join(saved_args_dir, arg+'.pkl'), 'wb') as f:print(getattr(FLAGS, arg),arg)pkl.dump(getattr(FLAGS, arg), f)else:print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found no {} setting from saved state, using CLI args ({}) but not saving.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))# 定义数据类型
def data_type():return tf.float16 if FLAGS.float16 else tf.float32#return tf.float16def my_reduce_mean(what_to_take_mean_over):return tf.reshape(what_to_take_mean_over, shape=[-1])[0]denom = 1.0#print(what_to_take_mean_over.get_shape())for d in what_to_take_mean_over.get_shape():#print(d)if type(d) == tf.Dimension:denom = denom*d.valueelse:denom = denom*dreturn tf.reduce_sum(what_to_take_mean_over)/denomdef linear(inp, output_dim, scope=None, stddev=1.0, reuse_scope=False):norm = tf.random_normal_initializer(stddev=stddev, dtype=data_type())const = tf.constant_initializer(0.0, dtype=data_type())with tf.variable_scope(scope or 'linear') as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))if reuse_scope:scope.reuse_variables()#print('inp.get_shape(): {}'.format(inp.get_shape()))w = tf.get_variable('w', [inp.get_shape()[1], output_dim], initializer=norm, dtype=data_type())b = tf.get_variable('b', [output_dim], initializer=const, dtype=data_type())return tf.matmul(inp, w) + bdef minibatch(inp, num_kernels=25, kernel_dim=10, scope=None, msg='', reuse_scope=False):with tf.variable_scope(scope or 'minibatch_d') as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))if reuse_scope:scope.reuse_variables()inp = tf.Print(inp, [inp],'{} inp = '.format(msg), summarize=20, first_n=20)x = tf.sigmoid(linear(inp, num_kernels * kernel_dim, scope))activation = tf.reshape(x, (-1, num_kernels, kernel_dim))activation = tf.Print(activation, [activation],'{} activation = '.format(msg), summarize=20, first_n=20)diffs = tf.expand_dims(activation, 3) - \tf.expand_dims(tf.transpose(activation, [1, 2, 0]), 0)diffs = tf.Print(diffs, [diffs],'{} diffs = '.format(msg), summarize=20, first_n=20)abs_diffs = tf.reduce_sum(tf.abs(diffs), 2)abs_diffs = tf.Print(abs_diffs, [abs_diffs],'{} abs_diffs = '.format(msg), summarize=20, first_n=20)minibatch_features = tf.reduce_sum(tf.exp(-abs_diffs), 2)minibatch_features = tf.Print(minibatch_features, [tf.reduce_min(minibatch_features), tf.reduce_max(minibatch_features)],'{} minibatch_features (min,max) = '.format(msg), summarize=20, first_n=20)return tf.concat( [inp, minibatch_features],1)class RNNGAN(object):"""定义RNN-GAN模型."""def __init__(self, is_training, num_song_features=None, num_meta_features=None):batch_size = FLAGS.batch_sizeself.batch_size =  batch_sizesonglength = FLAGS.songlengthself.songlength = songlength#self.global_step= tf.Variable(0, trainable=False)print('songlength: {}'.format(self.songlength))self._input_songdata = tf.placeholder(shape=[batch_size, songlength, num_song_features], dtype=data_type())self._input_metadata = tf.placeholder(shape=[batch_size, num_meta_features], dtype=data_type())#_split = tf.split(self._input_songdata,songlength,1)[0]print("self._input_songdata",self._input_songdata, 'songlength',songlength)#print(tf.squeeze(_split,[1]))songdata_inputs = [tf.squeeze(input_, [1])for input_ in tf.split(self._input_songdata,songlength,1)]with tf.variable_scope('G') as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))#lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_g, forget_bias=1.0, state_is_tuple=True)if is_training and FLAGS.keep_prob < 1:#lstm_cell = tf.nn.rnn_cell.DropoutWrapper(#    lstm_cell, output_keep_prob=FLAGS.keep_prob)cell = make_rnn_cell([FLAGS.hidden_size_g]*FLAGS.num_layers_g,dropout_keep_prob=FLAGS.keep_prob)else:cell = make_rnn_cell([FLAGS.hidden_size_g]*FLAGS.num_layers_g)	  #cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell for _ in range( FLAGS.num_layers_g)], state_is_tuple=True)self._initial_state = cell.zero_state(batch_size, data_type())# TODO: (possibly temporarily) disabling meta infoif FLAGS.generate_meta:metainputs = tf.random_uniform(shape=[batch_size, int(FLAGS.random_input_scale*num_meta_features)], minval=0.0, maxval=1.0)meta_g = tf.nn.relu(linear(metainputs, FLAGS.meta_layer_size, scope='meta_layer', reuse_scope=False))meta_softmax_w = tf.get_variable("meta_softmax_w", [FLAGS.meta_layer_size, num_meta_features])meta_softmax_b = tf.get_variable("meta_softmax_b", [num_meta_features])meta_logits = tf.nn.xw_plus_b(meta_g, meta_softmax_w, meta_softmax_b)meta_probs = tf.nn.softmax(meta_logits)random_rnninputs = tf.random_uniform(shape=[batch_size, songlength, int(FLAGS.random_input_scale*num_song_features)], minval=0.0, maxval=1.0, dtype=data_type())random_rnninputs = [tf.squeeze(input_, [1]) for input_ in tf.split( random_rnninputs,songlength,1)]# REAL GENERATOR:state = self._initial_state# as we feed the output as the input to the next, we 'invent' the initial 'output'.generated_point = tf.random_uniform(shape=[batch_size, num_song_features], minval=0.0, maxval=1.0, dtype=data_type())outputs = []self._generated_features = []for i,input_ in enumerate(random_rnninputs):if i > 0: scope.reuse_variables()concat_values = [input_]if not FLAGS.disable_feed_previous:concat_values.append(generated_point)if FLAGS.generate_meta:concat_values.append(meta_probs)if len(concat_values):input_ = tf.concat(axis=1, values=concat_values)input_ = tf.nn.relu(linear(input_, FLAGS.hidden_size_g,scope='input_layer', reuse_scope=(i!=0)))output, state = cell(input_, state)outputs.append(output)#generated_point = tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0)))generated_point = linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))self._generated_features.append(generated_point)# PRETRAINING GENERATOR, will feed inputs, not generated outputs:scope.reuse_variables()# as we feed the output as the input to the next, we 'invent' the initial 'output'.prev_target = tf.random_uniform(shape=[batch_size, num_song_features], minval=0.0, maxval=1.0, dtype=data_type())outputs = []self._generated_features_pretraining = []for i,input_ in enumerate(random_rnninputs):concat_values = [input_]if not FLAGS.disable_feed_previous:concat_values.append(prev_target)if FLAGS.generate_meta:concat_values.append(self._input_metadata)if len(concat_values):input_ = tf.concat(axis=1, values=concat_values)input_ = tf.nn.relu(linear(input_, FLAGS.hidden_size_g, scope='input_layer', reuse_scope=(i!=0)))output, state = cell(input_, state)outputs.append(output)#generated_point = tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0)))generated_point = linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))self._generated_features_pretraining.append(generated_point)prev_target = songdata_inputs[i]#outputs, state = tf.nn.rnn(cell, transformed, initial_state=self._initial_state)#self._generated_features = [tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))) for i,output in enumerate(outputs)]self._final_state = state# These are used both for pretraining and for D/G training further down.self._lr = tf.Variable(FLAGS.learning_rate, trainable=False, dtype=data_type())self.g_params = [v for v in tf.trainable_variables() if v.name.startswith('model/G/')]if FLAGS.adam:g_optimizer = tf.train.AdamOptimizer(self._lr)else:g_optimizer = tf.train.GradientDescentOptimizer(self._lr)reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)reg_constant = 0.1  # Choose an appropriate one.reg_loss = reg_constant * sum(reg_losses)reg_loss = tf.Print(reg_loss, reg_losses,'reg_losses = ', summarize=20, first_n=20)# 预训练print(tf.transpose(tf.stack(self._generated_features_pretraining), perm=[1, 0, 2]).get_shape())print(self._input_songdata.get_shape())self.rnn_pretraining_loss = tf.reduce_mean(tf.squared_difference(x=tf.transpose(tf.stack(self._generated_features_pretraining), perm=[1, 0, 2]), y=self._input_songdata))if not FLAGS.disable_l2_regularizer:self.rnn_pretraining_loss = self.rnn_pretraining_loss+reg_losspretraining_grads, _ = tf.clip_by_global_norm(tf.gradients(self.rnn_pretraining_loss, self.g_params), FLAGS.max_grad_norm)self.opt_pretraining = g_optimizer.apply_gradients(zip(pretraining_grads, self.g_params))# The discriminator tries to tell the difference between samples from the# true data distribution (self.x) and the generated samples (self.z).## Here we create two copies of the discriminator network (that share parameters),# as you cannot use the same network with different inputs in TensorFlow.with tf.variable_scope('D') as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))# Make list of tensors. One per step in recurrence.# Each tensor is batchsize*numfeatures.# TODO: (possibly temporarily) disabling meta infoprint('self._input_songdata shape {}'.format(self._input_songdata.get_shape()))print('generated data shape {}'.format(self._generated_features[0].get_shape()))# TODO: (possibly temporarily) disabling meta infoif FLAGS.generate_meta:songdata_inputs = [tf.concat([self._input_metadata, songdata_input],1) for songdata_input in songdata_inputs]#print(songdata_inputs[0])#print(songdata_inputs[0])#print('metadata inputs shape {}'(self._input_metadata.get_shape()))#print('generated metadata shape {}'.format(meta_probs.get_shape()))self.real_d,self.real_d_features = self.discriminator(songdata_inputs, is_training, msg='real')scope.reuse_variables()# TODO: (possibly temporarily) disabling meta infoif FLAGS.generate_meta:generated_data = [tf.concat([meta_probs, songdata_input],1) for songdata_input in self._generated_features]else:generated_data = self._generated_featuresif songdata_inputs[0].get_shape() != generated_data[0].get_shape():print('songdata_inputs shape {} != generated data shape {}'.format(songdata_inputs[0].get_shape(), generated_data[0].get_shape()))self.generated_d,self.generated_d_features = self.discriminator(generated_data, is_training, msg='generated')# Define the loss for discriminator and generator networks (see the original# paper for details), and create optimizers for bothself.d_loss = tf.reduce_mean(-tf.log(tf.clip_by_value(self.real_d, 1e-1000000, 1.0)) \-tf.log(1 - tf.clip_by_value(self.generated_d, 0.0, 1.0-1e-1000000)))self.g_loss_feature_matching = tf.reduce_sum(tf.squared_difference(self.real_d_features, self.generated_d_features))self.g_loss = tf.reduce_mean(-tf.log(tf.clip_by_value(self.generated_d, 1e-1000000, 1.0)))if not FLAGS.disable_l2_regularizer:self.d_loss = self.d_loss+reg_lossself.g_loss_feature_matching = self.g_loss_feature_matching+reg_lossself.g_loss = self.g_loss+reg_lossself.d_params = [v for v in tf.trainable_variables() if v.name.startswith('model/D/')]if not is_training:returnd_optimizer = tf.train.GradientDescentOptimizer(self._lr*FLAGS.d_lr_factor)d_grads, _ = tf.clip_by_global_norm(tf.gradients(self.d_loss, self.d_params),FLAGS.max_grad_norm)self.opt_d = d_optimizer.apply_gradients(zip(d_grads, self.d_params))if FLAGS.feature_matching:g_grads, _ = tf.clip_by_global_norm(tf.gradients(self.g_loss_feature_matching,self.g_params),FLAGS.max_grad_norm)else:g_grads, _ = tf.clip_by_global_norm(tf.gradients(self.g_loss, self.g_params),FLAGS.max_grad_norm)self.opt_g = g_optimizer.apply_gradients(zip(g_grads, self.g_params))self._new_lr = tf.placeholder(shape=[], name="new_learning_rate", dtype=data_type())self._lr_update = tf.assign(self._lr, self._new_lr)def discriminator(self, inputs, is_training, msg=''):# RNN discriminator:#for i in xrange(len(inputs)):#  print('shape inputs[{}] {}'.format(i, inputs[i].get_shape()))#inputs[0] = tf.Print(inputs[0], [inputs[0]],#        '{} inputs[0] = '.format(msg), summarize=20, first_n=20)if is_training and FLAGS.keep_prob < 1:inputs = [tf.nn.dropout(input_, FLAGS.keep_prob) for input_ in inputs]#lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_d, forget_bias=1.0, state_is_tuple=True)if is_training and FLAGS.keep_prob < 1:#lstm_cell = tf.nn.rnn_cell.DropoutWrapper(#lstm_cell, output_keep_prob=FLAGS.keep_prob)cell_fw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d,dropout_keep_prob=FLAGS.keep_prob)cell_bw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d,dropout_keep_prob=FLAGS.keep_prob)else:cell_fw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d)cell_bw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d)#cell_fw = tf.nn.rnn_cell.MultiRNNCell([lstm_cell for _ in range( FLAGS.num_layers_d)], state_is_tuple=True)self._initial_state_fw = cell_fw.zero_state(self.batch_size, data_type())if not FLAGS.unidirectional_d:#lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_g, forget_bias=1.0, state_is_tuple=True)#if is_training and FLAGS.keep_prob < 1:#  lstm_cell = tf.nn.rnn_cell.DropoutWrapper(#      lstm_cell, output_keep_prob=FLAGS.keep_prob)#cell_bw = tf.nn.rnn_cell.MultiRNNCell([lstm_cell for _ in range( FLAGS.num_layers_d)], state_is_tuple=True)self._initial_state_bw = cell_bw.zero_state(self.batch_size, data_type())print("cell_fw",cell_fw.output_size)#print("cell_bw",cell_bw.output_size)#print("inputs",inputs)#print("initial_state_fw",self._initial_state_fw)#print("initial_state_bw",self._initial_state_bw)outputs, state_fw, state_bw = tf.contrib.rnn.static_bidirectional_rnn(cell_fw, cell_bw, inputs, initial_state_fw=self._initial_state_fw, initial_state_bw=self._initial_state_bw)#outputs[0] = tf.Print(outputs[0], [outputs[0]],#        '{} outputs[0] = '.format(msg), summarize=20, first_n=20)#state = tf.concat(state_fw, state_bw)#endoutput = tf.concat(concat_dim=1, values=[outputs[0],outputs[-1]])else:outputs, state = tf.nn.rnn(cell_fw, inputs, initial_state=self._initial_state_fw)#state = self._initial_state#outputs, state = cell_fw(tf.convert_to_tensor (inputs),state)#endoutput = outputs[-1]if FLAGS.minibatch_d:outputs = [minibatch(tf.reshape(outp, shape=[FLAGS.batch_size, -1]), msg=msg, reuse_scope=(i!=0)) for i,outp in enumerate(outputs)]# decision = tf.sigmoid(linear(outputs[-1], 1, 'decision'))if FLAGS.end_classification:decisions = [tf.sigmoid(linear(output, 1, 'decision', reuse_scope=(i!=0))) for i,output in enumerate([outputs[0], outputs[-1]])]decisions = tf.stack(decisions)decisions = tf.transpose(decisions, perm=[1,0,2])print('shape, decisions: {}'.format(decisions.get_shape()))else:decisions = [tf.sigmoid(linear(output, 1, 'decision', reuse_scope=(i!=0))) for i,output in enumerate(outputs)]decisions = tf.stack(decisions)decisions = tf.transpose(decisions, perm=[1,0,2])print('shape, decisions: {}'.format(decisions.get_shape()))decision = tf.reduce_mean(decisions, reduction_indices=[1,2])decision = tf.Print(decision, [decision],'{} decision = '.format(msg), summarize=20, first_n=20)return (decision,tf.transpose(tf.stack(outputs), perm=[1,0,2]))def assign_lr(self, session, lr_value):session.run(self._lr_update, feed_dict={self._new_lr: lr_value})@propertydef generated_features(self):return self._generated_features@propertydef input_songdata(self):return self._input_songdata@propertydef input_metadata(self):return self._input_metadata@propertydef targets(self):return self._targets@propertydef initial_state(self):return self._initial_state@propertydef cost(self):return self._cost@propertydef final_state(self):return self._final_state@propertydef lr(self):return self._lr@propertydef train_op(self):return self._train_opdef run_epoch(session, model, loader, datasetlabel, eval_op_g, eval_op_d, pretraining=False, verbose=False, run_metadata=None, pretraining_d=False):"""Runs the model on the given data."""#epoch_size = ((len(data) // model.batch_size) - 1) // model.songlengthepoch_start_time = time.time()g_loss, d_loss = 10.0, 10.0g_losses, d_losses = 0.0, 0.0iters = 0#state = session.run(model.initial_state)time_before_graph = Nonetime_after_graph = Nonetimes_in_graph = []times_in_python = []#times_in_batchreading = []loader.rewind(part=datasetlabel)[batch_meta, batch_song] = loader.get_batch(model.batch_size, model.songlength, part=datasetlabel)run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)while batch_meta is not None and batch_song is not None:op_g = eval_op_gop_d = eval_op_dif datasetlabel == 'train' and not pretraining: # and not FLAGS.feature_matching:if d_loss == 0.0 and g_loss == 0.0:print('Both G and D train loss are zero. Exiting.')break#saver.save(session, checkpoint_path, global_step=m.global_step)#breakelif d_loss == 0.0:#print('D train loss is zero. Freezing optimization. G loss: {:.3f}'.format(g_loss))op_g = tf.no_op()elif g_loss == 0.0: #print('G train loss is zero. Freezing optimization. D loss: {:.3f}'.format(d_loss))op_d = tf.no_op()elif g_loss < 2.0 or d_loss < 2.0:if g_loss*.7 > d_loss:#print('G train loss is {:.3f}, D train loss is {:.3f}. Freezing optimization of D'.format(g_loss, d_loss))op_g = tf.no_op()#elif d_loss*.7 > g_loss:#print('G train loss is {:.3f}, D train loss is {:.3f}. Freezing optimization of G'.format(g_loss, d_loss))op_d = tf.no_op()#fetches = [model.cost, model.final_state, eval_op]if pretraining:if pretraining_d:fetches = [model.rnn_pretraining_loss, model.d_loss, op_g, op_d]else:fetches = [model.rnn_pretraining_loss, tf.no_op(), op_g, op_d]else:fetches = [model.g_loss, model.d_loss, op_g, op_d]feed_dict = {}feed_dict[model.input_songdata.name] = batch_songfeed_dict[model.input_metadata.name] = batch_meta#print(batch_song)#print(batch_song.shape)#for i, (c, h) in enumerate(model.initial_state):#  feed_dict[c] = state[i].c#  feed_dict[h] = state[i].h#cost, state, _ = session.run(fetches, feed_dict)time_before_graph = time.time()if iters > 0:times_in_python.append(time_before_graph-time_after_graph)if run_metadata:g_loss, d_loss, _, _ = session.run(fetches, feed_dict, options=run_options, run_metadata=run_metadata)else:g_loss, d_loss, _, _ = session.run(fetches, feed_dict)time_after_graph = time.time()if iters > 0:times_in_graph.append(time_after_graph-time_before_graph)g_losses += g_lossif not pretraining:d_losses += d_lossiters += 1if verbose and iters % 10 == 9:songs_per_sec = float(iters * model.batch_size)/float(time.time() - epoch_start_time)avg_time_in_graph = float(sum(times_in_graph))/float(len(times_in_graph))avg_time_in_python = float(sum(times_in_python))/float(len(times_in_python))#avg_time_batchreading = float(sum(times_in_batchreading))/float(len(times_in_batchreading))if pretraining:print("{}: {} (pretraining) batch loss: G: {:.3f}, avg loss: G: {:.3f}, speed: {:.1f} songs/s, avg in graph: {:.1f}, avg in python: {:.1f}.".format(datasetlabel, iters, g_loss, float(g_losses)/float(iters), songs_per_sec, avg_time_in_graph, avg_time_in_python))else:print("{}: {} batch loss: G: {:.3f}, D: {:.3f}, avg loss: G: {:.3f}, D: {:.3f} speed: {:.1f} songs/s, avg in graph: {:.1f}, avg in python: {:.1f}.".format(datasetlabel, iters, g_loss, d_loss, float(g_losses)/float(iters), float(d_losses)/float(iters),songs_per_sec, avg_time_in_graph, avg_time_in_python))#batchtime = time.time()[batch_meta, batch_song] = loader.get_batch(model.batch_size, model.songlength, part=datasetlabel)#times_in_batchreading.append(time.time()-batchtime)if iters == 0:return (None,None)g_mean_loss = g_losses/itersif pretraining and not pretraining_d:d_mean_loss = Noneelse:d_mean_loss = d_losses/itersreturn (g_mean_loss, d_mean_loss)def sample(session, model, batch=False):"""Samples from the generative model."""#state = session.run(model.initial_state)fetches = [model.generated_features]feed_dict = {}generated_features, = session.run(fetches, feed_dict)#print( generated_features)print( generated_features[0].shape)# The following worked when batch_size=1.# generated_features = [np.squeeze(x, axis=0) for x in generated_features]# If batch_size != 1, we just pick the first sample. Wastefull, yes.returnable = []if batch:for batchno in range(generated_features[0].shape[0]):returnable.append([x[batchno,:] for x in generated_features])else:returnable = [x[0,:] for x in generated_features]return returnabledef main(_):if not FLAGS.datadir:raise ValueError("Must set --datadir to midi music dir.")if not FLAGS.traindir:raise ValueError("Must set --traindir to dir where I can save model and plots.")restore_flags()summaries_dir = Noneplots_dir = Nonegenerated_data_dir = Nonesummaries_dir = os.path.join(FLAGS.traindir, 'summaries')plots_dir = os.path.join(FLAGS.traindir, 'plots')generated_data_dir = os.path.join(FLAGS.traindir, 'generated_data')try: os.makedirs(FLAGS.traindir)except: passtry: os.makedirs(summaries_dir)except: passtry: os.makedirs(plots_dir)except: passtry: os.makedirs(generated_data_dir)except: passdirectorynames = FLAGS.traindir.split('/')experiment_label = ''while not experiment_label:experiment_label = directorynames.pop()global_step = -1if os.path.exists(os.path.join(FLAGS.traindir, 'global_step.pkl')):with open(os.path.join(FLAGS.traindir, 'global_step.pkl'), 'r') as f:global_step = pkl.load(f)global_step += 1songfeatures_filename = os.path.join(FLAGS.traindir, 'num_song_features.pkl')metafeatures_filename = os.path.join(FLAGS.traindir, 'num_meta_features.pkl')synthetic=Noneif FLAGS.synthetic_chords:synthetic = 'chords'print('Training on synthetic chords!')if FLAGS.composer is not None:print('Single composer: {}'.format(FLAGS.composer))loader = music_data_utils.MusicDataLoader(FLAGS.datadir, FLAGS.select_validation_percentage, FLAGS.select_test_percentage, FLAGS.works_per_composer, FLAGS.pace_events, synthetic=synthetic, tones_per_cell=FLAGS.tones_per_cell, single_composer=FLAGS.composer)if FLAGS.synthetic_chords:# This is just a print out, to check the generated data.batch = loader.get_batch(batchsize=1, songlength=400)loader.get_midi_pattern([batch[1][0][i] for i in xrange(batch[1].shape[1])])num_song_features = loader.get_num_song_features()print('num_song_features:{}'.format(num_song_features))num_meta_features = loader.get_num_meta_features()print('num_meta_features:{}'.format(num_meta_features))train_start_time = time.time()checkpoint_path = os.path.join(FLAGS.traindir, "model.ckpt")songlength_ceiling = FLAGS.songlengthif global_step < FLAGS.pretraining_epochs:FLAGS.songlength = int(min(((global_step+10)/10)*10,songlength_ceiling))FLAGS.songlength = int(min((global_step+1)*4,songlength_ceiling))with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) as session:with tf.variable_scope("model", reuse=None) as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))m = RNNGAN(is_training=True, num_song_features=num_song_features, num_meta_features=num_meta_features)if FLAGS.initialize_d:vars_to_restore = {}for v in tf.trainable_variables():if v.name.startswith('model/G/'):print(v.name[:-2])vars_to_restore[v.name[:-2]] = vsaver = tf.train.Saver(vars_to_restore)ckpt = tf.train.get_checkpoint_state(FLAGS.traindir)if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):print("Reading model parameters from %s" % ckpt.model_checkpoint_path,end=" ")saver.restore(session, ckpt.model_checkpoint_path)session.run(tf.initialize_variables([v for v in tf.trainable_variables() if v.name.startswith('model/D/')]))else:print("Created model with fresh parameters.")session.run(tf.initialize_all_variables())saver = tf.train.Saver(tf.all_variables())else:saver = tf.train.Saver(tf.all_variables())ckpt = tf.train.get_checkpoint_state(FLAGS.traindir)if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):print("Reading model parameters from %s" % ckpt.model_checkpoint_path)saver.restore(session, ckpt.model_checkpoint_path)else:print("Created model with fresh parameters.")session.run(tf.initialize_all_variables())run_metadata = Noneif FLAGS.profiling:run_metadata = tf.RunMetadata()if not FLAGS.sample:train_g_loss,train_d_loss = 1.0,1.0for i in range(global_step, FLAGS.max_epoch):lr_decay = FLAGS.lr_decay ** max(i - FLAGS.epochs_before_decay, 0.0)if global_step < FLAGS.pretraining_epochs:#new_songlength = int(min(((i+10)/10)*10,songlength_ceiling))new_songlength = int(min((i+1)*4,songlength_ceiling))else:new_songlength = songlength_ceilingif new_songlength != FLAGS.songlength:print('Changing songlength, now training on {} events from songs.'.format(new_songlength))FLAGS.songlength = new_songlengthwith tf.variable_scope("model", reuse=True) as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))m = RNNGAN(is_training=True, num_song_features=num_song_features, num_meta_features=num_meta_features)if not FLAGS.adam:m.assign_lr(session, FLAGS.learning_rate * lr_decay)save = Falsedo_exit = Falseprint("Epoch: {} Learning rate: {:.3f}, pretraining: {}".format(i, session.run(m.lr), (i<FLAGS.pretraining_epochs)))if i<FLAGS.pretraining_epochs:opt_d = tf.no_op()if FLAGS.pretraining_d:opt_d = m.opt_dtrain_g_loss,train_d_loss = run_epoch(session, m, loader, 'train', m.opt_pretraining, opt_d, pretraining = True, verbose=True, run_metadata=run_metadata, pretraining_d=FLAGS.pretraining_d)if FLAGS.pretraining_d:try:print("Epoch: {} Pretraining loss: G: {:.3f}, D: {:.3f}".format(i, train_g_loss, train_d_loss))except:print(train_g_loss)print(train_d_loss)else:print("Epoch: {} Pretraining loss: G: {:.3f}".format(i, train_g_loss))else:train_g_loss,train_d_loss = run_epoch(session, m, loader, 'train', m.opt_d, m.opt_g, verbose=True, run_metadata=run_metadata)try:print("Epoch: {} Train loss: G: {:.3f}, D: {:.3f}".format(i, train_g_loss, train_d_loss))except:print("Epoch: {} Train loss: G: {}, D: {}".format(i, train_g_loss, train_d_loss))valid_g_loss,valid_d_loss = run_epoch(session, m, loader, 'validation', tf.no_op(), tf.no_op())try:print("Epoch: {} Valid loss: G: {:.3f}, D: {:.3f}".format(i, valid_g_loss, valid_d_loss))except:print("Epoch: {} Valid loss: G: {}, D: {}".format(i, valid_g_loss, valid_d_loss))if train_d_loss == 0.0 and train_g_loss == 0.0:print('Both G and D train loss are zero. Exiting.')save = Truedo_exit = Trueif i % FLAGS.epochs_per_checkpoint == 0:save = Trueif FLAGS.exit_after > 0 and time.time() - train_start_time > FLAGS.exit_after*60:print("%s: Has been running for %d seconds. Will exit (exiting after %d minutes)."%(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), (int)(time.time() - train_start_time), FLAGS.exit_after))save = Truedo_exit = Trueif save:saver.save(session, checkpoint_path, global_step=i)with open(os.path.join(FLAGS.traindir, 'global_step.pkl'), 'wb') as f:pkl.dump(i, f)if FLAGS.profiling:# Create the Timeline object, and write it to a jsontl = timeline.Timeline(run_metadata.step_stats)ctf = tl.generate_chrome_trace_format()with open(os.path.join(plots_dir, 'timeline.json'), 'w') as f:f.write(ctf)print('{}: Saving done!'.format(i))step_time, loss = 0.0, 0.0if train_d_loss is None: #pretrainingtrain_d_loss = 0.0valid_d_loss = 0.0valid_g_loss = 0.0if not os.path.exists(os.path.join(plots_dir, 'gnuplot-input.txt')):with open(os.path.join(plots_dir, 'gnuplot-input.txt'), 'w') as f:f.write('# global-step learning-rate train-g-loss train-d-loss valid-g-loss valid-d-loss\n')with open(os.path.join(plots_dir, 'gnuplot-input.txt'), 'a') as f:try:f.write('{} {:.4f} {:.2f} {:.2f} {:.3} {:.3f}\n'.format(i, m.lr.eval(), train_g_loss, train_d_loss, valid_g_loss, valid_d_loss))except:f.write('{} {} {} {} {} {}\n'.format(i, m.lr.eval(), train_g_loss, train_d_loss, valid_g_loss, valid_d_loss))if not os.path.exists(os.path.join(plots_dir, 'gnuplot-commands-loss.txt')):with open(os.path.join(plots_dir, 'gnuplot-commands-loss.txt'), 'a') as f:f.write('set terminal postscript eps color butt "Times" 14\nset yrange [0:400]\nset output "loss.eps"\nplot \'gnuplot-input.txt\' using ($1):($3) title \'train G\' with linespoints, \'gnuplot-input.txt\' using ($1):($4) title \'train D\' with linespoints, \'gnuplot-input.txt\' using ($1):($5) title \'valid G\' with linespoints, \'gnuplot-input.txt\' using ($1):($6) title \'valid D\' with linespoints, \n')if not os.path.exists(os.path.join(plots_dir, 'gnuplot-commands-midistats.txt')):with open(os.path.join(plots_dir, 'gnuplot-commands-midistats.txt'), 'a') as f:f.write('set terminal postscript eps color butt "Times" 14\nset yrange [0:127]\nset xrange [0:70]\nset output "midistats.eps"\nplot \'midi_stats.gnuplot\' using ($1):(100*$3) title \'Scale consistency, %\' with linespoints, \'midi_stats.gnuplot\' using ($1):($6) title \'Tone span, halftones\' with linespoints, \'midi_stats.gnuplot\' using ($1):($10) title \'Unique tones\' with linespoints, \'midi_stats.gnuplot\' using ($1):($23) title \'Intensity span, units\' with linespoints, \'midi_stats.gnuplot\' using ($1):(100*$24) title \'Polyphony, %\' with linespoints, \'midi_stats.gnuplot\' using ($1):($12) title \'3-tone repetitions\' with linespoints\n')try:Popen(['gnuplot','gnuplot-commands-loss.txt'], cwd=plots_dir)Popen(['gnuplot','gnuplot-commands-midistats.txt'], cwd=plots_dir)except:print('failed to run gnuplot. Please do so yourself: gnuplot gnuplot-commands.txt cwd={}'.format(plots_dir))song_data = sample(session, m, batch=True)midi_patterns = []print('formatting midi...')midi_time = time.time()for d in song_data:midi_patterns.append(loader.get_midi_pattern(d))print('done. time: {}'.format(time.time()-midi_time))filename = os.path.join(generated_data_dir, 'out-{}-{}-{}.mid'.format(experiment_label, i, datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S')))loader.save_midi_pattern(filename, midi_patterns[0])stats = []print('getting stats...')stats_time = time.time()for p in midi_patterns:stats.append(get_all_stats(p))print('done. time: {}'.format(time.time()-stats_time))#print(stats)stats = [stat for stat in stats if stat is not None]if len(stats):stats_keys_string = ['scale']stats_keys = ['scale_score', 'tone_min', 'tone_max', 'tone_span', 'freq_min', 'freq_max', 'freq_span', 'tones_unique', 'repetitions_2', 'repetitions_3', 'repetitions_4', 'repetitions_5', 'repetitions_6', 'repetitions_7', 'repetitions_8', 'repetitions_9', 'estimated_beat', 'estimated_beat_avg_ticks_off', 'intensity_min', 'intensity_max', 'intensity_span', 'polyphony_score', 'top_2_interval_difference', 'top_3_interval_difference', 'num_tones']statsfilename = os.path.join(plots_dir, 'midi_stats.gnuplot')if not os.path.exists(statsfilename):with open(statsfilename, 'a') as f:f.write('# Average numers over one minibatch of size {}.\n'.format(FLAGS.batch_size))f.write('# global-step {} {}\n'.format(' '.join([s.replace(' ', '_') for s in stats_keys_string]), ' '.join(stats_keys)))with open(statsfilename, 'a') as f:f.write('{} {} {}\n'.format(i, ' '.join(['{}'.format(stats[0][key].replace(' ', '_')) for key in stats_keys_string]), ' '.join(['{:.3f}'.format(sum([s[key] for s in stats])/float(len(stats))) for key in stats_keys])))print('Saved {}.'.format(filename))if do_exit:if FLAGS.call_after is not None:print("%s: Will call \"%s\" before exiting."%(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), FLAGS.call_after))res = call(FLAGS.call_after.split(" "))print ('{}: call returned {}.'.format(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), res))exit()sys.stdout.flush()test_g_loss,test_d_loss = run_epoch(session, m, loader, 'test', tf.no_op(), tf.no_op())print("Test loss G: %.3f, D: %.3f" %(test_g_loss, test_d_loss))song_data = sample(session, m)filename = os.path.join(generated_data_dir, 'out-{}-{}-{}.mid'.format(experiment_label, i, datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S')))loader.save_data(filename, song_data)print('Saved {}.'.format(filename))if __name__ == "__main__":tf.app.run()

结论

作者提出了一种基于生成对抗网络训练的连续数据循环神经网络C-RNN-GAN。实验结果表明对抗训练有助于模型学习更多变的模式。虽然生成音乐与训练数据中的音乐相比仍有差距,但C-RNN-GAN生成音乐更接近真实音乐。

缺点以及后续展望

模型虽能生成音乐,但与人类判断的音乐仍有差距,后续可深入探究生成音乐与真实音乐存在差距的原因。作者提出可以进一步优化模型结构,提高生成音乐的质量。此外,还可研究该模型在其他类型连续序列数据中的应用。

总结

本周我阅读了一篇关于GAN生成序列数据的论文,为下一次阅读TimeGAN论文打作铺垫。通过阅读这篇论文,我了解到C-RNN-GAN模型如何利用对抗训练来生成连续序列数据,其中,生成器(G)包含LSTM层和全连接层;判别器(D)由Bi-LSTM(双向长短期记忆网络)组成。即 D双向的,G是单向的。同时,作者也通过实验证明了C-RNN-GAN的优势,虽然模型在序列数据生成方面有一定的效果,但仍存在一些不足之处,如生成序列数据与真实序列数据之间任然存在差距、模型结构尚可优化、应用到其他场景等等。作者提出的这些不足与展望为我后续研究数据增强方向提供了参考和思路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/9035.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于物联网的火灾报警器设计与实现(论文+源码)

1 总体方案设计 本次基于物联网的火灾报警器&#xff0c;其系统总体架构如图2.1所示&#xff0c;采用STM32f103单片机作为控制器&#xff0c;通过DS18B20传感器实现温度检测&#xff1b;通过MQ-2烟雾传感器实现烟雾检测&#xff1b;.通过火焰传感器实现火焰检测&#xff0c;当…

ResNeSt: Split-Attention Networks论文学习笔记

这张图展示了一个名为“Split-Attention”的神经网络结构&#xff0c;该结构在一个基数组&#xff08;cardinal group&#xff09;内进行操作。基数组通常指的是在神经网络中处理的一组特征或通道。图中展示了如何通过一系列操作来实现对输入特征的注意力机制。 以下是图中各部…

模糊综合评价

模糊综合评价的特点主要体现在以下几个方面&#xff1a; 一、系统性强 模糊综合评价法能够综合考虑多种因素的影响&#xff0c;将定性指标和定量指标相结合&#xff0c;对评价对象进行全面、系统的分析。这种方法避免了单一指标评价的片面性&#xff0c;提高了评价的准确性和…

宫本茂的游戏设计思想:有趣与风格化

作为独立游戏开发者之一&#xff0c;看到任天堂宫本茂20年前的言论后&#xff0c;深感认同。 游戏研发思想&#xff0c;与企业战略是互为表里的&#xff0c;游戏是企业战略的具体战术体现&#xff0c;虚空理念的有形载体。 任天堂长盛不衰的关键就是靠简单有趣的游戏&#xf…

deepseek-r1 本地部署

deepseek 最近太火了 1&#xff1a;环境 win10 cpu 6c 内存 16G 2: 部署 1>首先下载ollama 官网&#xff1a;https://ollama.com ollama 安装在c盘 模型可以配置下载到其他盘 OLLAMA_MODELS D:\Ollama 2>下载模型并运行 ollama run deepseek-r1:<标签> 1.5b 7b 8…

electron typescript运行并设置eslint检测

目录 一、初始化package.json 二、安装依赖 1、安装electron 2、安装typescript依赖 3、安装eslint 三、项目结构 四、配置启动项 一、初始化package.json 我的&#xff1a;这里的"main"没太大影响&#xff0c;看后面的步骤。 {"name": "xlo…

每日一题-判断是否是平衡二叉树

判断是否是平衡二叉树 题目描述数据范围题解解题思路递归算法代码实现代码解析时间和空间复杂度分析示例示例 1示例 2 总结 ) 题目描述 输入一棵节点数为 n 的二叉树&#xff0c;判断该二叉树是否是平衡二叉树。平衡二叉树定义为&#xff1a; 它是一棵空树。或者它的左右子树…

WS2812 梳理和颜色表示方法的对比:RGB和HSV

WS2812 WS2812是一种可编程的LED灯&#xff0c;具有RGB显示效果&#xff0c;可显示的颜色数量为2^24。 常用颜色表示方法 表示方法&#xff1a; RGB 表示 加法混色原理&#xff1a;RGB 颜色模型基于加法混色原理&#xff0c;将红&#xff08;Red&#xff09;、绿&#xff08…

一文简单回顾Java中的String、StringBuilder、StringBuffer

简单说下String、StringBuilder、StringBuffer的区别 String、StringBuffer、StringBuilder在Java中都是用于处理字符串的&#xff0c;它们之间的区别是String是不可变的&#xff0c;平常开发用的最多&#xff0c;当遇到大量字符串连接的时候&#xff0c;就用StringBuilder&am…

对游戏宣发的粗浅思考

1.两极分化 认真观摩了mgs系列制作人的x账号&#xff0c; 其更新频率吓死人&#xff0c;一天能发几十条之多&#xff0c;吓死人。大部分都是转发相关账号的ds2或mgs相关内容&#xff0c; 每日刻意的供给这些内容来满足几十万粉丝需求&#xff0c;维护热情。 幕后是专业的公…

【数据结构】空间复杂度

目录 一、引入空间复杂度的原因 二、空间复杂度的分析 ❥ 2.1 程序运行时内存大小 ~ 程序本身大小 ❥ 2.2 程序运行时内存大小 ~ 算法运行时内存大小 ❥ 2.3 算法运行时内存大小 ❥ 2.4 不考虑算法全部运行空间的原因 三、空间复杂度 ❥ 3.1空间复杂度的定义 ❥ 3.2 空…

实践网络安全:常见威胁与应对策略详解

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 引言 在数字化转型的浪潮中&#xff0c;网络安全的重要性已达到前所未有的高度。无论是个人用户、企业&#xff0c;还是政府机构…

Tensor 基本操作2 理解 tensor.max 操作,沿着给定的 dim 是什么意思 | PyTorch 深度学习实战

前一篇文章&#xff0c;Tensor 基本操作1 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 目录 Tensor 基本操作torch.max默认指定维度 Tensor 基本操作 torch.max torch.max 实现降维运算&#xff0c;基于指定的 d…

图像处理之HSV颜色空间

目录 1 RGB 的局限性 2 HSV 颜色空间 3 RGB与HSV相互转换 4 HSV颜色模型对图像的色相、饱和度和明度进行调节 5 演示Demo 5.1 开发环境 5.2 功能介绍 5.3 下载地址 参考 1 RGB 的局限性 RGB 是我们接触最多的颜色空间&#xff0c;由三个通道表示一幅图像&#xff0c;分…

数据结构题目 课时9

题目 1、任何一个带权的无向连通图的最小生成树&#xff08; &#xff09;。 A. 只有一棵 B. 有一棵或多棵 C. 一定有多棵 D. 可能不存在 2、一个赋权网络如下图所示。从顶点 a 开始&#xff0c;用 Prim 算法求出一棵最小生成树。 3、请对下图的无向带权图按克鲁斯卡尔算法求…

Linux之详谈——权限管理

目录 小 峰 编 程 ​编辑 一、权限概述 1、什么是权限 2、为什么要设置权限 3、Linux中的权限类别- 4、Linux中文件所有者 1&#xff09;所有者分类&#xff08;谁&#xff09; 2&#xff09;所有者的表示方法 ① u(the user who owns it)&#xff08;属主权限&…

私有包上传maven私有仓库nexus-2.9.2

一、上传 二、获取相应文件 三、最后修改自己的pom文件

记录 | 基于Docker Desktop的MaxKB安装

目录 前言一、MaxKBStep 1Step2 二、运行MaxKB更新时间 前言 参考文章&#xff1a;如何利用智谱全模态免费模型&#xff0c;生成大家都喜欢的图、文、视并茂的文章&#xff01; MaxKB的Github下载地址 参考视频&#xff1a;【2025最新MaxKB教程】10分钟学会一键部署本地私人专属…

4.flask-SQLAlchemy,表Model定义、增删查改操作

介绍 SQLAlchemy是对数据库的一个抽象 开发者不用直接与SQL语句打交道 Python对象来操作数据库 SQLAlchemy是一个关系型数据库 安装 flask中SQLAlchemy的配置 from flask import Flask from demo.user_oper import userdef create_app():app Flask(__name__)# 使用sessi…

jemalloc 5.3.0的tsd模块的源码分析

一、背景 在主流的内存库里&#xff0c;jemalloc作为android 5.0-android 10.0的默认分配器肯定占用了非常重要的一席之地。jemalloc的低版本和高版本之间的差异特别大&#xff0c;低版本的诸多网上整理的总结&#xff0c;无论是在概念上和还是在结构体命名上在新版本中很多都…