NLP文本匹配任务Text Matching [无监督训练]:SimCSE、ESimCSE、DiffCSE 项目实践

NLP文本匹配任务Text Matching [无监督训练]:SimCSE、ESimCSE、DiffCSE 项目实践

文本匹配多用于计算两个文本之间的相似度,该示例会基于 ESimCSE 实现一个无监督的文本匹配模型的训练流程。文本匹配多用于计算两段「自然文本」之间的「相似度」。

例如,在搜索引擎中,我们通常需要判断用户的搜索内容是否相似:

A:蛋黄吃多了有什么坏处    B:吃鸡蛋白过多有什么坏处  ->  不相似
A:蛋黄吃多了有什么坏处    B:蛋黄可以多吃吗         ->  相似
...

那最直觉的思路就是让人工去标注文本对,再喂给模型去学习,这种方法称为基于「监督学习」训练出的模型:

但是,如果我们今天没有这么多的标注数据,只有一大堆的「未标注」数据,我们还能训练一个匹配模型吗?这种不依赖于「人工标注数据」的方式,就叫做「无监督」(或自监督)学习方式。我们今天要讲的 SimCSE, 就是一种「无监督」训练模型。

SimCSE: Simple Contrastive Learning of Sentence Embeddings

1.SimCSE 是如何做到无监督的?

SimCSE 将对比学习(Contrastive Learning)的思想引入到文本匹配中。对比学习的核心思想就是:将相似的样本拉近,将不相似的样本推远

但现在问题是:我们没有标注数据,怎么知道哪些文本是相似的,哪些是不相似的呢?SimCSE 相出了一种很妙的办法,由于预训练模型在训练的时候通常都会使用 dropout 机制。这就意味着:即使是同一个样本过两次模型也会得到两个不同的 embedding。而因为同样的样本,那一定是相似的,模型输出的这两个 embedding 距离就应当尽可能的相近;反之,那些不同的输入样本过模型后得到的 embedding 就应当尽可能的被推远。

具体来讲,一个 batch 内每个句子会过 2 次模型,得到 2 * batch 个向量,将这些句子中通过同样句子得到的向量设置为正例,其他设置为负例。

假设 a1 和 a2 是由句子 a 过两次模型得到的结果,那么一个 batch 内的正负例构建如下所示:

a1a2b1b2c1c2
a1-10010000
a21-1000000
b100-100100
b2001-10000
c10000-1001
c200001-100

其中,对角线上的 - 100 表示自身和自身不做相似度比较。

2. SimCSE 的缺点?

从 SimCSE 的正例构建中我们可以看出来,所有的正例都是由「同一个句子」过了两次模型得到的。这就会造成一个问题:模型会更倾向于认为,长度相同的句子就代表一样的意思。由于数据样本是随机选取的,那么很有可能在一个 batch 内采样到的句子长度是不相同的。

为了解决这个问题,我们最终采取的实现方式为 ESimCSE

3. ESimCSE 解决模型对文本长度的敏感问题

ESimCSE 通过随机重复单词(Word Repetition)的方式来构建正例,巧妙的解决了句子长度敏感性的问题:

ESimCSE: Enhanced Sample Building Method for Contrastive Learning of Unsupervised Sentence Embedding

要想消除模型对句子长度的敏感,我们就需要在构建正例的时候让输入句子的长度发生改变,如下所示:

那么,改变句子长度通常有 3 种方法:随机删除、随机添加、同义词替换,但它们均存在句意变化的风险:

方法原句子变换后的句子句意是否改变
随机删除我 [不] 喜欢你我喜欢你
随机添加今天的饭好吃今天的饭 [不] 好吃
同义词替换小明长得像一只 [狼]小明长得像一只 [狗]

用语义变换后的句子去构建正例,模型效果自然会受到影响。

那如果我们随机重复一些单词呢?

方法原句子变换后的句子句意是否改变
随机重复单词今天天气很好今今天天气很好好
随机重复单词我喜欢你我我喜欢欢你

可以看到,通过随机重复单词,既能够改变句子长度,又不会轻易改变语义。

实现上,假设我们有一个 batch 的句子,我们先依次将每一个句子都进行随机单词重复(产生正例),如下:

origin ->     ['人和畜生的区别', '今天天气很好', '三星手机屏幕是不是最好的?']
repetition -> ['人人和畜生的的区别', '今今天天气很好好', '三星星手机屏屏幕是不是最最好好的?']

随后,我们将 origin 的 embedding(batch,768) 和 repetition 的 embedding(batch,768)做矩阵乘法,可以得到一个矩阵(batch,batch),矩阵对角线上就是正例,其余的均是负例:

句子 a句子 b句子 c
句子 a0.92480.23420.4242
句子 b0.31420.91230.1422
句子 c0.29030.18570.9983

矩阵中第(i,j)个元素代表 origin 列表中的第 i 个元素和 repetition 列表中第 j 个元素的相似度。

接下来就好构建训练标签了,因为 label 都在对角线上,所以第 n 行的 label 就是 n 。

labels = [i for i in range(len(origin))]     # labels = [0, 1, 2]

之后就用 CrossEntropyLoss 去计算并梯度回传就能开始训练啦。

def forward(self,query_input_ids: torch.tensor,query_token_type_ids: torch.tensor,doc_input_ids: torch.tensor,doc_token_type_ids: torch.tensor,device='cpu') -> torch.tensor:"""传入query/doc对,构建正/负例并计算contrastive loss。Args:query_input_ids (torch.LongTensor): (batch, seq_len)query_token_type_ids (torch.LongTensor): (batch, seq_len)doc_input_ids (torch.LongTensor): (batch, seq_len)doc_token_type_ids (torch.LongTensor): (batch, seq_len)device (str): 使用设备Returns:torch.tensor: (1)"""query_embedding = self.get_pooled_embedding(input_ids=query_input_ids,token_type_ids=query_token_type_ids)                                                           # (batch, self.output_embedding_dim)doc_embedding = self.get_pooled_embedding(input_ids=doc_input_ids,token_type_ids=doc_token_type_ids)                                                           # (batch, self.output_embedding_dim)cos_sim = torch.matmul(query_embedding, doc_embedding.T)    # (batch, batch)margin_diag = torch.diag(torch.full(                        # (batch, batch), 只有对角线等于margin值的对角矩阵size=[query_embedding.size()[0]], fill_value=self.margin)).to(device)cos_sim = cos_sim - margin_diag                             # 主对角线(正例)的余弦相似度都减掉 margincos_sim *= self.scale                                       # 缩放相似度,便于收敛labels = torch.arange(                                      # 只有对角上为正例,其余全是负例,所以这个batch样本标签为 -> [0, 1, 2, ...]0, query_embedding.size()[0], dtype=torch.int64).to(device)loss = self.criterion(cos_sim, labels)return loss

4.DiffCSE

结合句子间差异的无监督句子嵌入对比学习方法——DiffCSE主要还是在SimCSE上进行优化(可见SimCSE的重要性),通过ELECTRA模型的生成伪造样本和RTD(Replaced Token Detection)任务,来学习原始句子与伪造句子之间的差异,以提高句向量表征模型的效果。

其思想同样来自于CV领域(采用不变对比学习和可变对比学习相结合的方法可以提高图像表征的效果)。作者提出使用基于dropout masks机制的增强作为不敏感转换学习对比学习损失和基于MLM语言模型进行词语替换的方法作为敏感转换学习「原始句子与编辑句子」之间的差异,共同优化句向量表征。

在SimCSE模型中,采用pooler层(一个带有tanh激活函数的全连接层)作为句子向量输出。该论文发现,采用带有BN的两层pooler效果更为突出,BN在SimCSE模型上依然有效。

①对于掩码概率,经实验发现,在掩码概率为30%时,模型效果最优。
②针对两个损失之间的权重值,经实验发现,对比学习损失为RTD损失200倍时,模型效果最优。

参考链接:https://blog.csdn.net/PX2012007/article/details/127696477

5. 数据集准备

项目中提供了一部分示例数据,我们使用未标注的用户搜索记录数据来训练一个文本匹配模型,数据在 data/LCQMC

若想使用自定义数据训练,只需要仿照示例数据构建数据集即可:

  • 训练集:
喜欢打篮球的男生喜欢什么样的女生
我手机丢了,我想换个手机
大家觉得她好看吗
晚上睡觉带着耳机听音乐有什么害处吗?
学日语软件手机上的
...
  • 测试集:
开初婚未育证明怎么弄?	初婚未育情况证明怎么开?	1
谁知道她是网络美女吗?	爱情这杯酒谁喝都会醉是什么歌	0
人和畜生的区别是什么?	人与畜生的区别是什么!	1
男孩喝女孩的尿的故事	怎样才知道是生男孩还是女孩	0
...

由于是无监督训练,因此训练集(train.txt)中不需要记录标签,只需要大量的文本即可。

测试集(dev.tsv)用于测试无监督模型的效果,因此需要包含真实标签。

每一行用 \t 分隔符分开,第一部分部分为句子A,中间部分为句子B,最后一部分为两个句子是否相似(label)

6.模型训练

修改训练脚本 train.sh 里的对应参数, 开启模型训练:

python train.py \--model "nghuyong/ernie-3.0-base-zh" \--train_path "data/LCQMC/train.txt" \--dev_path "data/LCQMC/dev.tsv" \--save_dir "checkpoints/LCQMC" \--img_log_dir "logs/LCQMC" \--img_log_name "ERNIE-ESimCSE" \--learning_rate 1e-5 \--dropout 0.3 \--batch_size 64 \--max_seq_len 64 \--valid_steps 400 \--logging_steps 50 \--num_train_epochs 8 \--device "cuda:0"

正确开启训练后,终端会打印以下信息:

...
0%|          | 0/2 [00:00<?, ?it/s]
100%|██████████| 2/2 [00:00<00:00, 226.41it/s]
DatasetDict({train: Dataset({features: ['text'],num_rows: 477532})dev: Dataset({features: ['text'],num_rows: 8802})
})
global step 50, epoch: 1, loss: 0.34367, speed: 2.01 step/s
global step 100, epoch: 1, loss: 0.19121, speed: 2.02 step/s
global step 150, epoch: 1, loss: 0.13498, speed: 2.00 step/s
global step 200, epoch: 1, loss: 0.10696, speed: 1.99 step/s
global step 250, epoch: 1, loss: 0.08858, speed: 2.02 step/s
global step 300, epoch: 1, loss: 0.07613, speed: 2.02 step/s
global step 350, epoch: 1, loss: 0.06673, speed: 2.01 step/s
global step 400, epoch: 1, loss: 0.05954, speed: 1.99 step/s
Evaluation precision: 0.58459, recall: 0.87210, F1: 0.69997, spearman_corr: 
0.36698
best F1 performence has been updated: 0.00000 --> 0.69997
global step 450, epoch: 1, loss: 0.25825, speed: 2.01 step/s
global step 500, epoch: 1, loss: 0.27889, speed: 1.99 step/s
global step 550, epoch: 1, loss: 0.28029, speed: 1.98 step/s
global step 600, epoch: 1, loss: 0.27571, speed: 1.98 step/s
global step 650, epoch: 1, loss: 0.26931, speed: 2.00 step/s
...

logs/LCQMC 文件下将会保存训练曲线图:

7.模型推理

完成模型训练后,运行 inference.py 以加载训练好的模型并应用:

...if __name__ == '__main__':...sentence_pair = [('男孩喝女孩的故事', '怎样才知道是生男孩还是女孩'),('这种图片是用什么软件制作的?', '这种图片制作是用什么软件呢?')]...res = inference(query_list, doc_list, model, tokenizer, device)print(res)

运行推理程序:

python inference.py

得到以下推理结果:

[0.1527191698551178, 0.9263839721679688]   # 第一对文本相似分数较低,第二对文本相似分数较高

参考链接:https://github.com/HarderThenHarder/transformers_tasks/blob/main/text_matching/supervised

github无法连接的可以在:https://download.csdn.net/download/sinat_39620217/88214437 下载

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/90869.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TypeScript 关于对【泛型】的定义使用解读

目录 概念导读泛型函数多个泛型参数泛型约束泛型别名泛型接口泛型类总结&#xff1a; 概念导读 泛型&#xff08;Generics&#xff09;是指在定义函数、接口或类的时候&#xff0c;不预先指定具体的类型&#xff0c;而在使用的时候再指定类型的一种特性。使用泛型 可以复用类型…

C++入门

目录 一&#xff1a;关键字 二&#xff1a;命名空间 1.引入 2.命名空间的定义 <1>:命名空间中定义变量/函数/类型 <2>:命名空间可以嵌套 <3>:同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中 3.命名空…

【设计模式】建造者模式

建造者模式&#xff08;Builder Pattern&#xff09;使用多个简单的对象一步一步构建成一个复杂的对象。这种类型的设计模式属于创建型模式&#xff0c;它提供了一种创建对象的最佳方式。 一个 Builder 类会一步一步构造最终的对象。该 Builder 类是独立于其他对象的。 介绍 …

idea入门与maven配置的一些介绍

idea入门与maven配置的一些介绍 1.确保Java和Maven已安装2.创建一个新的Maven项目3.导航到要创建项目的目录配置Maven4.配置项目的pom.xml文件5.配置其他Tomcat和设置jdk6.构建和运行项目 关于idea入门基础配置 步骤1&#xff1a;安装IntelliJ IDEA 首先&#xff0c;从IntelliJ…

【Vue-Router】命名视图

命名视图 同时 (同级) 展示多个视图&#xff0c;而不是嵌套展示&#xff0c;例如创建一个布局&#xff0c;有 sidebar (侧导航) 和 main (主内容) 两个视图&#xff0c;这个时候命名视图就派上用场了。 可以在界面中拥有多个单独命名的视图&#xff0c;而不是只有一个单独的出…

JVM内存区域划分

JVM把虚拟机的内存区域划分为方法区&#xff08;Method Area&#xff09;、堆&#xff08;Heap&#xff09;、栈&#xff08;Java Stack&#xff09;、本地方法栈&#xff08;Native Method Stack&#xff09;、和一个PC寄存器&#xff08;程序计数器&#xff0c;Progam Counti…

msvcp140.dll如何重新安装?快速安装msvcp140.dll的方法分享

msvcp140.dll是Windows操作系统的一个动态链接库文件&#xff0c;它是Microsoft Visual C Redistributable的一部分。这个文件在运行某些应用程序时非常重要。然而&#xff0c;在某些情况下&#xff0c;msvcp140.dll文件可能会损坏或遗失&#xff0c;导致应用程序无法正常运行。…

神经网络基础-神经网络补充概念-03-逻辑回归损失函数

概念 逻辑回归使用的损失函数通常是"对数损失"&#xff08;也称为"交叉熵损失"&#xff09;或"逻辑损失"。这些损失函数在训练过程中用于衡量模型预测与实际标签之间的差异&#xff0c;从而帮助模型逐步调整权重参数&#xff0c;以更好地拟合数…

堆的实现以及应用

&#x1f493;博主个人主页:不是笨小孩&#x1f440; ⏩专栏分类:数据结构与算法&#x1f440; 刷题专栏&#x1f440; C语言&#x1f440; &#x1f69a;代码仓库:笨小孩的代码库&#x1f440; ⏩社区&#xff1a;不是笨小孩&#x1f440; &#x1f339;欢迎大家三连关注&…

Unity zSpace 开发

文章目录 1.下载 zSpace 开发环境1.1 zCore Unity Package1.2 zView Unity Package 2. 导入工程3. 发布设置4.功能实现4.1 用触控笔来实现对模型的拖拽&#xff1a; 5. 后续更新 1.下载 zSpace 开发环境 官网地址 1.1 zCore Unity Package zSpace 开发核心必须 1.2 zView …

K8S系列三:单服务部署

写在前面 本文是K8S系列第三篇&#xff0c;主要面向对K8S新手同学&#xff0c;阅读本文需要读者对K8S的基本概念&#xff0c;比如Pod、Deployment、Service、Namespace等基础概念有所了解。尚且不熟悉的同学推荐先阅读本系列的第一篇文章《K8S系列一&#xff1a;概念入门》[1]…

图解 Paxos 算法

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱写博客的嗯哼&#xff0c;爱好Java的小菜鸟 &#x1f525;如果感觉博主的文章还不错的话&#xff0c;请&#x1f44d;三连支持&#x1f44d;一下博主哦 &#x1f4dd;个人博客&#xff1a;敬请期待 &#x1f4d5;系列…

ROS学习笔记(二)---使用 VScode 开发 ROS 的Python程序(简例)

一、任务介绍 本篇作为ROS学习的第二篇&#xff0c;是关于如何在Ubuntu18.04中使用VSCode编写一个Python程序&#xff0c;输出“Hello&#xff01;”的内容介绍。 首先我们来了解下ROS的文件系统&#xff0c;ROS文件系统级指的是在硬盘上ROS源代码的组织形式&#xff0c;其结构…

东方晶源亮相第十一届半导体设备年会,共话发展“芯”机遇

8月11日&#xff0c;以“协力同芯抢机遇&#xff0c;集成创新造设备”为主题的第十一届&#xff08;2023年&#xff09;中国电子专用设备工业协会半导体设备年会暨产业链合作论坛&#xff08;CSEAC&#xff09;在无锡太湖国际博览中心圆满闭幕。为期3天的CSEAC&#xff0c;通过…

安装Linux操作系统CentOS 6详细图文步骤

为满足业务对Linux操作系统部署的要求&#xff0c;本文档主要提供CentOS 6操作系统的最小化安装和基本配置, 安装本系统建议最少1GB内存和2GB磁盘空间。 1、 使用光盘或者挂载ISO镜像&#xff0c;在出现如下图形界面时选择【Install or upgrade an existing system】并按Ent…

Redis 缓存过期及删除

一、Redis缓存过期策略 物理内存达到上限后&#xff0c;像磁盘空间申请虚拟内存(硬盘与内存的swap),甚至崩溃。 内存与硬盘交换 (swap) 虚拟内存&#xff0c;频繁I0 性能急剧下降&#xff0c;会造成redis内存急剧下降&#xff1b; 一般设置物理内存的3/4&#xff0c;在redis…

【C/C++】STL queue 非线程安全接口,危险!

STL 中的 queue 是非线程安全的&#xff0c;一个组合操作&#xff1a;front(); pop() 先读取队首元素然后删除队首元素&#xff0c;若是有多个线程执行这个组合操作的话&#xff0c;可能会发生执行序列交替执行&#xff0c;导致一些意想不到的行为。因此需要重新设计线程安全的…

每天一道leetcode:剑指 Offer 13. 机器人的运动范围(中等广度优先遍历剪枝)

今日份题目&#xff1a; 地上有一个m行n列的方格&#xff0c;从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0]的格子开始移动&#xff0c;它每次可以向左、右、上、下移动一格&#xff08;不能移动到方格外&#xff09;&#xff0c;也不能进入行坐标和列坐标的数位之…

jmeter返回值中的中文显示为????问号处理解决方案

jmeter返回值中的中文显示为????问号 查找解决方案时&#xff0c;发现了以下两种解决方案&#xff1a; 一、1.打开jmter配置文件bin/jmeter.properties 2.修改配置文件&#xff0c;查找“sampleresult.default.encoding”将其改为utf8&#xff0c;注意要去掉“#”号 sample…

opencv带GStreamer之Windows编译

目录 1、下载GStreamer和安装2. GSTReamer CMake配置3. 验证是否配置成功 1、下载GStreamer和安装 下载地址如下&#xff1a; gstreamer-1.0-msvc-x86_64-1.18.2.msi gstreamer-1.0-devel-msvc-x86_64-1.18.2.msi 安装目录无要求&#xff0c;主要是安装完设置环境变量 xxx\1…