基于PSO-KELM的时间序列数据预测(含对比实验)

在这里插入图片描述
在这里插入图片描述

前段时间有粉丝私信想让我出一期对时间序列预测的文章,所以今天它来了。
在这里插入图片描述

时间序列数据,如股指价格,具有波动性、非线性和突变的特点,对于这类数据的预测往往需要可靠强健的预测模型,而传统的机器学习算法如SVM、BP等,大都采用误差最小化或反向传播来改进预测性能,大量参数调整、复杂的模型架构以及迭代时间长让这些模型逐渐落后。

而极限学习机ELM和核极限学习机KELM能够很好的克服这些问题,作者在前面的文章中介绍了ELM和KELM的原理及其实现,ELM具有训练速度快、复杂度低、克服了传统梯度算法的局部极小、过拟合和学习率的选择不合适等优点,而KELM则利用了核学习的方法,用核映射代替随机映射,能够有效改善隐层神经元随机赋值带来的泛化性和稳定性下降的问题,应用于非线性问题的性能更优[1]。

因此作者将用KELM和ELM结合作者前面提到的优化算法来预测股指的变化,并将之与BP神经网络这类传统机器学习算法进行对比。

00目录

1 PSO-KELM模型
2代码目录
3 预测性能
4 展望
参考文献

01 PSO-KELM模型

1.1 PSO与KELM原理

PSO即粒子群优化算法,KELM即核极限学习机,作者在前面的文章中讲解过其具体原理,文章链接如下,这里不再赘述。

KELM核极限学习机原理及其实现

1.2 样本选取与预处理
以某股的开盘价作为研究样本,有效数据共554个,考虑用前20日的开盘价预测第21日的开盘价,即以20个数据作为一个样本进行滚动预测,一共可得到534个样本,选取前70%的样本作为训练数据,后30%作为测试数据。
在这里插入图片描述

原始数据间差波动范围比较大,会影响模型稳定性和预测精度。因此在把开盘价数据输入之前,首先需要对数据进行预处理即归一化本文对原始数据进行归一化处理,将样本数据处理到区间[0, 1]之间,归一化公式为
在这里插入图片描述

minVal为数据序列中的最小值,maxval为数据序列最大值。

1.3 PSO-KELM预测模型
将PSO与KELM结合,以KELM模型预测的MAE作为PSO的适应度,该模型流程如下:
在这里插入图片描述

02 代码目录
在这里插入图片描述

其中,MY_XX_Reg.m都是可单独运行的主程序,而result.m用于对比不同算法预测效果,result.m可依次运行4个MY_XX_Reg.m,并对其预测结果进行对比。

03 预测性能

3.1 评价指标
为了验证预测结果的准确性和精度,分别采用均方根差(Root Mean Square Error,RMSE) 、平均绝对百分误差( Mean Absolute Percentage Error,MAPE) 和平均绝对值误差 ( Mean Absolute Error,MAE) 作为评价标准。
在这里插入图片描述

式中 Yi 和Y ^ i分别为真实值和预测值; n 为样本数。
3.2 结果对比

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述在这里插入图片描述

可以看出,预测模型中,经PSO优化后的KELM预测模型取得了不错的效果,同时,也可以引入作者前面提到的各种改进算法提高PSO的寻优性能,以取得更佳的效果

04 展望

在这一篇文章中作者实现了PSO-KELM对于时间序列数据的预测,并对比了ELM和BP。后面作者将介绍蜣螂优化算法及其改进,这也是一位粉丝朋友私信我的,KAU本着有求必应的原则(能力范围内~)给安排了

以上

源码获取

可私信作者

参考文献
[1] Huang G B,Zhou H M,Ding X J,et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems, Man,and Cybernetics,Part B (Cybernetics),2012,42(2):513.

另:如果有伙伴有待解决的优化问题(各种领域都可),可以发我,我会选择性的更新利用优化算法解决这些问题的文章。

如果这篇文章对你有帮助或启发,可以点击右下角的赞/在看(ง •̀_•́)ง(不点也行),若有定制需求,可私信作者。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/91491.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c51单片机串行通信示例代码(单片机--单片机通信)(附带proteus线路图)

//这个发送端代码 #include "reg51.h" #include "myheader.h" #define uchar unsigned char long int sleep_i0; long int main_i0; void main() {uchar sendx[6]{2,0,2,3,8,1};sleep(2000);TMOD0x20;TH10XF4;//根据波特率计算公式这里需要设置为这么多才能…

02 基于51单片机的LED闪烁实验

目录 前言 一、整体目录结构 二、代码展示 三、main.c代码解析 四、下载到单片机中 总结 前言 前面我们已经学会了点亮一个led的实验,今天我们来实现LED闪烁。前面我们讲到想要让LED亮的话,只要给单片机引脚高电平就好了,如果给LED低电平的话…

竞赛项目 深度学习验证码识别 - 机器视觉 python opencv

文章目录 0 前言1 项目简介2 验证码识别步骤2.1 灰度处理&二值化2.2 去除边框2.3 图像降噪2.4 字符切割2.5 识别 3 基于tensorflow的验证码识别3.1 数据集3.2 基于tf的神经网络训练代码 4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 &#x…

Android 面试笔记整理-Binder机制

作者:浪人笔记 面试可能会问到的问题 从IPC的方式问到Binder的优势为什么zygote跟其他服务进程的通讯不使用BinderBinder线程池和Binder机制 等等这些问题都是基于你对Binder的理解还有对其他IPC通讯的理解 IPC方式有多少种 传统的IPC方式有Socket、共享内存、管道…

LeetCode 1631. Path With Minimum Effort【最小瓶颈路;二分+BFS或DFS;计数排序+并查集;最小生成树】1947

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…

流量日志分析--实操

[鹤城杯 2021]流量分析 <--第一道流量分析不难,主要就是布尔盲注的流量包分析,直接查看http请求包即可我们可以通过观察看到注入成功的响应长度不同,这里成功的为978字节,失败的994字节.不要问为什么.其实也可以直接判断.978的流量比994的少了非常多 显然就是成功的(因为这里…

LeetCode--HOT100题(26)

目录 题目描述&#xff1a;142. 环形链表 II&#xff08;中等&#xff09;题目接口解题思路代码 PS: 题目描述&#xff1a;142. 环形链表 II&#xff08;中等&#xff09; 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返…

antd中Switch组件的使用

<Switch> 是 Ant Design 中的一个组件&#xff0c;用于在开关之间切换。checkedChildren 是 <Switch> 组件的一个属性&#xff0c;用于指定在开关打开时显示的文本或 React 元素。 以下是 <Switch> 组件的基本语法&#xff1a; import { Switch } from ant…

【大数据】一些基本概念

一、数据库、数据仓库、数据湖 1.什么是数据库 (Database, DB) 数据库是指长期储存在计算机中的有组织的, 可共享的数据集合 就是存储数据的仓库 数据库有三个特点: 永久存储, 有组织, 可共享 数据库是一种结构化数据存储技术&#xff0c;用于存储和管理有组织的数据。数据库…

在 Linux 中使用 cp 命令

cp 命令是 Linux 中一个重要的命令&#xff0c;你可能经常会用到它。 正如名称所示&#xff0c;cp 代表 复制copy&#xff0c;它被用于 在 Linux 命令行中复制文件和目录。 这是一个相对简单的命令&#xff0c;只有几个选项&#xff0c;但你仍有必要深入了解它。 在展示 cp …

使用GUI Guider工具开发嵌入式GUI应用 (3) - 使用label组件

使用GUI Guider工具开发嵌入式GUI应用 (3) - 使用label组件 文章目录 使用GUI Guider工具开发嵌入式GUI应用 (3) - 使用label组件引言在GUI Guider工程中创建label组件编译MCU工程并下载到开发板 引言 本节讲述在GUI Guider中&#xff0c;应用各种UI的基本元素&#xff0c;并顺…

(十)人工智能应用--深度学习原理与实战--模型的保存与加载使用

目的:将训练好的模型保存为文件,下次使用时直接加载即可,不必重复建模训练。 神经网络模型训练好之后,可以保存为文件以持久存储,这样下次使用时就不重新建模训练,直接加载就可以。TensorfLow提供了灵活的模型保存方案,既可以同时保存网络结构和权重(即保存全模型),也可…

datawhale49期-task02:安装MMSegmentation

task02:安装MMSegmentation 运行环境&#xff1a;window11 ,GPU RTX 4060、CUDA v11.8 1. Pytorch环境 步骤 1. 创建一个 conda 环境&#xff0c;并激活 conda create --name openmmlab python3.8 -y conda activate openmmlabStep 2. 参考 official instructions 安装 PyTor…

详谈数据库InnoDB引擎与MyISAM引擎

目录 1. 简单了解什么是存储引擎? 2. InnoDB 引擎概述 3. MyISAM 引擎概述 4. InnoDB 与 MyISAM 的一些区别 1. 简单了解什么是存储引擎? 相信很多人在听到存储引擎这个名字的时候可能会有些疑惑&#xff0c;听着名字就觉得有些难&#xff0c;导致很多人没有兴趣了解它&a…

【算法题】螺旋矩阵IV (求解n阶折线蛇形矩阵)

一、问题的提出 n阶折线蛇形矩阵的特点是按照图1所示的方式排列元素。n阶蛇形矩阵是指矩阵的大小为nn&#xff0c;其中n为正整数。 题目背景 一个 n 行 n 列的螺旋矩阵可由如图1所示的方法生成&#xff0c;观察图片&#xff0c;找出填数规律。填数规则为从 1 开始填到 nn。 …

HTTP 协议的基本格式和 fiddler 的用法

目录 一. HTTP 协议 1. HTTP协议是什么 2. HTTP协议的基本格式 HTTP请求 首行 GET和POST方法&#xff1a; 其他方法 经典面试题&#xff1a; URL Header(请求报头)部分 空行 ​HTTP响应 状态码总结: 二、Fiddler的用法 1.Fidder的安装 2.Fidder的使用 一. HTTP 协议 1. H…

如何在 iOS 上安装并使用 ONLYOFFICE 文档

借助 iOS 版文档应用&#xff0c;您可在移动端设备上访问存储于 ONLYOFFICE 账户中的文件&#xff0c;查看和编辑现有文本文档、电子表格和演示文稿&#xff0c;创建新文档并对其进行整理&#xff0c;以及连接第三方云存储服务。您可与其他门户网站用户协作编辑文档&#xff0c…

多环境_部署项目

多环境&#xff1a; 指同一套项目代码在不同的阶段需要根据实际情况来调整配置并且部署到不同的机器上。 为什么需要&#xff1f; 1. 每个环境互不影响 2. 区分不同的阶段&#xff1a;开发 / 测试 / 生产 3. 对项目进行优化&#xff1a; 1. 本地日志级别 2. 精简依赖&a…

图像的镜像变换之c++实现(qt + 不调包)

1.基本原理 1.水平镜像变化 设图像的宽度为width&#xff0c;则水平镜像变化的映射关系如下&#xff1a; 2.垂直镜像变化 设图像的宽度为height&#xff0c;则垂直镜像变化的映射关系如下&#xff1a; 2.代码实现&#xff08;代码是我以前自学图像处理时写的&#xff0c;代码很…

ARM(汇编指令)

.global _start _start:/*mov r0,#0x5mov r1,#0x6 bl LoopLoop:cmp r0,r1beq stopsubhi r0,r0,r1subcc r1,r1,r0mov pc,lr*/ mov r0,#0x1mov r1,#0x0mov r2,#0x64bl Loop Loop:cmp r0,r2bhi stopadd r1,r1,r0add r0,r0,#0x01mov pc,lr stop:B stop.end