DIP: Spectral Bias of DIP 频谱偏置解释DIP

On Measuring and Controlling the Spectral Bias of the Deep Image Prior

文章目录

  • On Measuring and Controlling the Spectral Bias of the Deep Image Prior
    • 1. 方法原理
      • 1.1 动机
      • 1.2 相关概念
      • 1.3 方法原理
        • 频带一致度量与网络退化
        • 谱偏移和网络结构的关系
        • Lipschitz-controlled 卷积层
        • Gaussian-controlled 上采样层
        • 自动停止迭代过程
    • 2. 实验结果
    • 3. 总结

文章地址:https://arxiv.org/pdf/2107.01125.pdf

代码地址: https://github.com/shizenglin/Measure-and-Control-Spectral-Bias

参考博客: https://zhuanlan.zhihu.com/p/598650125


1. 方法原理

1.1 动机

动机

  • Deep Image Prior已经被广泛地应用于去噪、超分、图像恢复等
  • 但是我们尚不清楚如何在网络架构的选择之外控制DIP
  • DIP存在性能达到峰值之后退化的问题 --> 需要early stopping

贡献

  • 使用谱偏移度量和解释 DIP的原理
    • DIP学习目标图像低频分量的效率比高频分量高
  • 控制谱偏移
    • 使用Lipschitz-controlled 正则化和 Lipschitz 批归一化加速和稳定优化过程
    • 使用 上采样方法(bilinear upsampling)引入了倾向于恢复低频分量的特点(谱偏移)
    • 使用了一种简单的early stopping策略防止多余的计算

1.2 相关概念

谱偏移原则是指:神经网络拟合低频信息的效率比高频信息快

相关文章参考:

  • On the Spectral Bias of Neural Networks
  • FREQUENCY PRINCIPLE: FOURIER ANALYSIS SHEDS LIGHT ON DEEP NEURAL NETWORKS

用其中的一些图进行解释:

  • 随着迭代的进行,神经网络的输出(绿色线)首先拟合的是真实观测数据的低频,然后再去逐渐拟合高频

在这里插入图片描述


反(逆)问题根据观测结果获取真实模型的一种求解模式。具体的可以参考

  • Untrained Neural Network Priors for Inverse Imaging Problems: A Survey

注意反问题求解存在一个普遍的问题:多解性。也就是多个反演结果的合成数据都可以和观测数据匹配。通常一个减少多解性的方法就是添加约束条件(在公式中表现为正则化约束)


1.3 方法原理

频带一致度量与网络退化

  这篇文章是从频率域的角度进行谱偏移分析的,用 { θ 1 , . . . , θ T } \{\theta^{1},...,\theta^{T}\} {θ1,...,θT}表示第对应迭代次数网络的参数,用 { f θ 1 , . . . , f θ T } \{f_{\theta^{1}},...,f_{\theta^{T}}\} {fθ1,...,fθT}表示对应的网格过程。对图片频率分析需要使用傅里叶变换获得 频率域的信息,用 F ( f θ ( t ) ) F(f_{\theta^{(t)}}) F(fθ(t))表示。频谱图的表示如下:

如果对标签图片也做一次傅里叶变换,那么可以求解网络输出和这个结果的比值
H θ ( t ) = F { f θ ( t ) } F { y 0 } H_{\theta^{(t)}} = \frac{F\{f_{\theta^{(t)}}\}}{F\{y_0\}} Hθ(t)=F{y0}F{fθ(t)}

  • 这个比值越接近于1表示网络输出和标签的相关性越高
  • H图像是一个以中心对称的图像,这里为方便统计就将其分割成为多个同心圆环,求圆环中的平均值作为这个圈内的值。也就是将一个二维的度量变为了一个一维的度量
  • 文章中将频率划分为了:lowest、low、medium、high和highest五个部分

这个度量比值在DIP不同应用场景中随着迭代次数的变化

  • 随着DIP迭代次数的增加,PSNR会先达到最高然后缓慢降低(性能达到峰值之后会下降)
  • 在PSRN最高的时候(图中绿线),恰好是lowest分量的频带一致性刚好最高的时候
  • 通过下图验证了 DIP也存在谱偏移的现象:低频分量学得更快且频带一致性很高,而高频分量学习相对较慢且频带一致性较低
  • 随着高频部分的频带一致性提高,PSNR下降

谱偏移和网络结构的关系

前面有研究表示Encoder-Decoder结构的DIP效果更好,这里作者对比了三种不同结构进行测试对比(a. 没有Encoder部分的DIP; b. 没有上采样层的DIP;):

  • 不论什么结构谱偏移都存在
  • 去掉上采样层的Decoder结构(ConvNet)拟合高频的效率更高,这里表现为高频部分的频带一致性高
  • 无上采样层的ConvNet结构最大的PSNR比Decoder和DIP低

结论

  • 无训练网络UNNP可以解决逆图像问题的原因是:低频学习效率高,高频学习效率相对较慢(谱偏移)
  • 高频信息通常为为结构高频信息和噪声高频信息,当网络开始学习噪声高频信息的时候,网络恢复的性能开始下降
  • 这里通过一个类似消融实验的方法说明上采样层是可以提高PSNR的,但是这会影响低频的收敛速度

防止网络退化,平衡性能与效率的方向

  • 保证性能的前提下,使用参数量更少的 Decoder结构 替代DIP的 Encoder-Decoder结构
  • 性能退化:抑制网络对高频噪声的学习(使用上采样层)
  • 加速收敛:使用更合适的上采样层
  • 提前停止策略:自动检测?

Lipschitz-controlled 卷积层

从频率域理解卷积操作

  • 对一个时间域/空间域的变量做一个傅里叶变换其实是将作用域变换到了频率域,这样的其中一个作用是:
    • 将空间域的卷积操作 变为 频率域的乘积操作,简化计算
    • 当然对于信号处理还有更多的好处,比如FK变换可以用于滤波
  • 图像和“卷积核”的作用在频率域其实就是一个乘积过程
    • 在这里插入图片描述

卷积核具有滤波的作用,但是什么样的卷积核可以抑制高频呢?


L-Lipschitz连续
这个概念很有意思,WGAN-GP中也用到了

其定义是:如果函数f在区间Q中,以常数L Lipschitz连续,那么对于 x , y ∈ Q x,y \in Q x,yQ有:
∣ ∣ f ( x ) − f ( y ) ∣ ∣ ≤ L ∣ ∣ x − y ∣ ∣ ||f(x)- f(y)|| \leq L||x - y|| ∣∣f(x)f(y)∣∣L∣∣xy∣∣

常数L就被称为函数f在区间Q上的 Lipschitz常数。Lipschitz连续其实是限制了连续函数f的局部变动幅度不能超过某一个常量。我个人感觉一个非常更简单地理解这个概念的方法就是将稍微变动一下这个公式:
∣ ∣ f ( x ) − f ( y ) ∣ ∣ ∣ ∣ x − y ∣ ∣ ≤ L \frac{||f(x)- f(y)||}{||x - y||} \leq L ∣∣xy∣∣∣∣f(x)f(y)∣∣L
这个东西看起来就像是求导了,更多的可以参考https://blog.csdn.net/FrankieHello/article/details/105739610


结合Lipschitz和频谱分析

假设卷积层的 f f f是符合C-Lipschitz的,存在:
∣ f ^ ( k ) ∣ ≤ C ∣ k ∣ 2 ≤ ∣ ∣ w ∣ ∣ s n ∣ k ∣ 2 |\hat{f}(k)| \leq \frac{C}{|k|^2} \leq \frac{||w||_{sn}}{|k|^2} f^(k)k2Ck2∣∣wsn

  • k表示频率, ∣ f ^ ( k ) ∣ |\hat{f}(k)| f^(k)表示傅里叶系数的模(有实部和虚部)
  • 分母是 k 2 k^2 k2表示在高频的时候衰减很强,学习更高的频率需要更高的频谱范数(分子)
  • ∣ ∣ w ∣ ∣ s n ||w||_{sn} ∣∣wsn 表示卷积层参数矩阵w的谱范数,可以通过限制谱范数的上限来限制卷积层学习更高频率的能力
    • ∣ ∣ w ∣ ∣ w ∣ ∣ s n ∣ ∣ s n = 1 ||\frac{w}{||w||_{sn}}||_{sn} = 1 ∣∣∣∣wsnwsn=1, ∣ ∣ w λ ∣ ∣ w ∣ ∣ s n ∣ ∣ s n = λ ||\frac{w\lambda}{||w||_{sn}}||_{sn} = \lambda ∣∣∣∣wsnwλsn=λ
    • w m a x ( 1 , ∣ ∣ w ∣ ∣ s n / λ ) \frac{w}{max(1,||w||_{sn}/\lambda)} max(1,∣∣wsn/λ)w

注意这里我们想要达到的一个效果就是:限制最高可以学习的频率。可以选择一个合适的 λ \lambda λ在保证恢复效果的同时不去恢复噪声信号。

其他网络层对Lipschitz常数的影响


Gaussian-controlled 上采样层

插值、邻近上采样层的平滑操作会让DIP网络收敛速度变慢,但是上采样层对于抑制高频信息又有一定的作用,为了平衡二者作者引入了 gaussian-controlled上采样层。

方法就是:转置卷积 + 高斯核

  • 转置卷积可以自定义上采样的卷积核
  • 为了控制平滑程度,卷积核最简单的就是高斯核
  • 实验不同的高斯核 σ \sigma σ越小收敛越快,但是PSNR越小

自动停止迭代过程

  • 利用Lipschitz方法限制了网络学习的最高频率噪声,避免了网络的退化
  • 当高频部分到达了上界限,也就意味着网络在之前就已经收敛了
  • 怎么评估高频到达了上界限
    • r = B l u r r i n e s s S h a r p n e s s r = \frac{Blurriness}{Sharpness} r=SharpnessBlurriness
    • 即当模糊度/锐度之间的导数小于预先设置的阈值的时候,停止迭代
    • r ( f θ ) = B ( f θ ) / S ( f θ ) r(f_{\theta}) = B(f_{\theta})/S(f_{\theta}) r(fθ)=B(fθ)/S(fθ)
    • Δ r ( f θ ( t ) ) = ∣ 1 n ∑ i = 1 n r ( f θ ( t − n − i ) ) − 1 n ∑ i = 1 n r ( f θ ( t − n − i ) ) ∣ \Delta r(f_{\theta ^{(t)}}) = |\frac{1}{n}\sum_{i=1}^{n}r(f_{\theta}^{(t-n-i)}) - \frac{1}{n}\sum_{i=1}^{n}r(f_{\theta}^{(t-n-i)})| Δr(fθ(t))=n1i=1nr(fθ(tni))n1i=1nr(fθ(tni))

2. 实验结果

  • 去噪

  • Image deblockign

    • 在这里插入图片描述
  • Image Inpainting

  • 在这里插入图片描述

3. 总结

研究思路

  1. 从谱偏置方向分析DIP的工作,网络先拟合低频信息,逐渐拟合高频信息
  2. 怎么控制拟合高频信息?–> 高频截断 --> 应用Lipschitz理论控制,解决网络层退化的问题
  3. 网络训练慢怎么解决?–>分析发现常规的上采样层相当于一个低通滤波器,引入了过多的低频分量导致很多时候收敛非常慢,所以使用 gaussian 核控制的转置卷积方法 平衡网络收敛效率的问题。
  4. 怎么Early stopping 减少迭代次数? --> 使用模糊度与锐度的比值的导数进行衡量

优点

  • 将GAN 谱优化的策略放到DIP之中,在频率域中分析各个层的性质:低频收敛快,高频收敛慢。
  • 用谱偏置的思路解释了网络退化问题
  • 提出频带一致性模糊度和锐度比值梯度 平衡了DIP收敛效率和效果

改进方向

  • 就个人观点:噪声这里假设都是高频的,但是低频噪声、结构噪声是否会有影响?
  • 该研究给实际应用DIP提供了很大的可能性,但是就实验效果来看并没有提升,甚至有所下降。所以基于这种方法怎么去同时提高效果?
  • 就我个人想法:继续减少参数化网络的参数量(PIP等工作),并且提高恢复的效果(持续研究方向) 是现在的研究方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/91767.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【环境配置】Windows10终端和VSCode下能够直接打开Anaconda-Prompt

很多小伙伴在 Windows 下做深度学习开发的时候,遇到终端没有在 Linux 那么方便,那么我们现在就可以来设置一下;这样我们也可以在文件夹内部右键打开终端,也可以在 VS Code 里面新建一个虚拟环境的控制台;这里主要是针对…

【网络基础】传输层

【网络基础】传输层 文章目录 【网络基础】传输层1、端口号1.1 工具 2、UDP协议2.1 协议端格式2.2 UDP特点2.3 传输数据报2.4 缓冲区2.5 基于UDP应用层协议2.6 使用注意事项 3、TCP协议3.1 协议段格式3.2 ACK机制3.3 超时重传机制3.4 连接管理机制3.5 滑动窗口3.6 流量控制3.7 …

梅赛德斯-奔驰将成为首家集成ChatGPT的汽车制造商

ChatGPT的受欢迎程度毋庸置疑。OpenAI这个基于人工智能的工具,每天能够吸引无数用户使用,已成为当下很受欢迎的技术热点。因此,有许多公司都在想方设法利用ChatGPT来提高产品吸引力,卖点以及性能。在汽车领域,梅赛德斯…

【云计算原理及实战】初识云计算

该学习笔记取自《云计算原理及实战》一书,关于具体描述可以查阅原本书籍。 云计算被视为“革命性的计算模型”,因为它通过互联网自由流通使超级计算能力成为可能。 2006年8月,在圣何塞举办的SES(捜索引擎战略)大会上&a…

部门用户权限应用的设计和创建(进行中)

数据库表设计 代码实现之前首先是表设计, 六个基本步骤 1.需求分析 (分析用户需求,包括数据、功能和性能需求) 2.概念结构设计(主要采用 E-R图) 3.逻辑结构设计 (将ER图转换成表,实现从E-R模型到关系模型转换) 4.数据库物理设计 (为设计的…

Transformer(二)(VIT,TNT)(基于视觉CV)

目录 1.视觉中的Attention 2.VIT框架(图像分类,不需要decoder) 2.1整体框架 2.2.CNN和Transformer遇到的问题 2.3.1CNN 2.3.2Transformer 2.3.3二者对比 2.4.公式理解 3TNT 参考文献 1.视觉中的Attention 对于人类而言看到一幅图可以立…

机器学习笔记 - 基于C++的​​深度学习 二、实现卷积运算

一、卷积 卷积是信号处理领域的老朋友。最初的定义如下 在机器学习术语中: I(…)通常称为输入 K(…)作为内核,并且 F(…)作为给定K的I(x)的特征图。 虑多维离散域,我们可以将积分转换为以下求和 对于二维数字图像,我们可以将其重写为: <

STM32F103-OLED使用教程

目录 1. OLED屏介绍2. OLED如何显示一个点3. 配置OLED屏幕4. OLED显示字符串和汉字5. OLED屏幕显示图片6. 总结 1. OLED屏介绍 OLED&#xff08;Organic Light Emitting Diode&#xff09;&#xff1a;有机发光二极管OLED显示屏&#xff1a;性能优异的新型显示屏&#xff0c;具…

Jay17 2023.8.14日报 即 留校集训阶段性总结

8.14 打了moeCTF&#xff0c;还剩一题ak Web。 Jay17-集训结束阶段性总结&#xff1a; 集训产出&#xff1a; 自集训开始以来一个半月&#xff0c;最主要做的事情有三。 一是跟课程&#xff0c;复习学过的知识&#xff0c;学习新的知识&#xff1b;目前课程已大体听完&…

HTML+JavaScript构建一个将C/C++定义的ANSI字符串转换为MASM32定义的DWUniCode字符串的工具

公文一键排版系统基本完成&#xff0c;准备继续完善SysInfo&#xff0c;增加用户帐户信息&#xff0c;其中涉及到Win32_Account结构&#xff0c;其C定义如下&#xff1a; [Dynamic, Provider("CIMWin32"), UUID("{8502C4CC-5FBB-11D2-AAC1-006008C78BC7}"…

H13-922题库 HCIP-GaussDB-OLAP V1.5

**H13-922 V1.5 GaussDB(DWS) OLAP题库 华为认证GaussDB OLAP数据库高级工程师HCIP-GaussDB-OLAP V1.0自2019年10月18日起&#xff0c;正式在中国区发布。当前版本V1.5 考试前提&#xff1a; 掌握基本的数据库基础知识、掌握数据仓库运维的基础知识、掌握基本Linux运维知识、…

idea打jar包

目录 1、打包设置 2、打包介绍 3、开始打包 1、打包设置 先设置要打包的模块信息&#xff0c;即打包进去的内容。如下图所示&#xff1a;File --> Project Structure --> Artifacts&#xff0c;点击&#xff0b;号完成模块创建&#xff0c;其中有两种方式&#xff1a;…

SpringBoot整合、SpringBoot与异步任务

目录 一、背景描述二、简单使用方法三、原理五、使用自定义线程池1、默认使用2、如何使用自定义线程池 六、Async失效情况1、同一个类中&#xff0c;一个方法调用 Async标注的方法 一、背景描述 java 的代码是同步顺序执行&#xff0c;当我们需要执行异步操作时我们通常会去创…

Vue 批量注册组件

全局组件 在components文件夹下新建一个Gloabl文件夹&#xff08;可以自行命名&#xff09; 在目录下新建index.js import Vue from vue// require.context(路径, 是否遍历子目录, 匹配规则) const requireComponents require.context(./, true, /\.vue/)requireComponents.k…

【TypeScript】基础类型

安装 Node.js 环境 https://nodejs.org/en 终端中可以查到版本号即安装成功。 然后&#xff0c;终端执行npm i typescript -g安装 TypeScript 。 查到版本号即安装成功。 字符串类型 let str:string "Hello"; console.log(str);终端中先执行tsc --init&#xf…

uni-app 集成推送

研究了几天&#xff0c;终于是打通了uni-app的推送&#xff0c;本文主要针对的是App端的推送开发过程&#xff0c;分为在线推送和离线推送。我们使用uni-app官方推荐的uni-push2.0。官方文档 准备工作&#xff1a;开通uni-push功能 勾选uniPush2.0点击"配置"填写表单…

日常BUG——普通页面跳转tabbar页面报错

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;日常BUG、BUG、问题分析☀️每日 一言 &#xff1a;存在错误说明你在进步&#xff01; 一、问题描述 微信小程序页面跳转的时候出现下面的问题&#xff1a; wx.redirectTo({url: /pages/index/i…

matlab使用教程(16)—图论中图的定义与修改

1.修改现有图的节点和边 此示例演示如何使用 addedge 、 rmedge 、 addnode 、 rmnode 、 findedge 、 findnode 及 subgraph 函数访问和修改 graph 或 digraph 对象中的节点和/或边。 1.1 添加节点 创建一个包含四个节点和四条边的图。s 和 t 中的对应元素用于指定每条…

SSL握手协议相关概念

下图为握手协议的流程图&#xff0c;具体的解释参考博客&#xff1a; 【下】安全HTTPS-全面详解对称加密&#xff0c;非对称加密&#xff0c;数字签名&#xff0c;数字证书和HTTPS_tenfyguo的博客-CSDN博客 下面梳理一下SSL协议中的一些细节。首先是相关名词&#xff1a;证书、…

SpringBoot中的可扩展接口

目录 # 背景 # 可扩展的接口启动调用顺序图 # ApplicationContextInitializer # BeanDefinitionRegistryPostProcessor # BeanFactoryPostProcessor # InstantiationAwareBeanPostProcessor # SmartInstantiationAwareBeanPostProcessor # BeanFactoryAware # Applicati…