kafka集成篇

kafka的Java客户端

生产者

1.引入依赖

        <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.6.3</version></dependency>

2.生产者发送消息的基本实现

/*** 消息的发送⽅*/
public class MyProducer {private final static String TOPIC_NAME = "my-replicated-topic";public static void main(String[] args) {Properties props = new Properties();props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"124.222.253.33:9092,124.222.253.33:9093,124.222.253.33:9094");// 把发送的key从字符串序列化为字节数组props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());// 把发送消息value从字符串序列化为字节数组props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());RecordMetadata metadata = null;try (Producer<String, String> producer = new KafkaProducer<>(props)) {Order order = new Order(1L, 99.9D);// 未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNumProducerRecord<String, String> producerRecord = newProducerRecord<>(TOPIC_NAME, order.getOrderId().toString(), JSON.toJSONString(order));// 等待消息发送成功的同步阻塞⽅法metadata = producer.send(producerRecord).get();} catch (InterruptedException | ExecutionException e) {throw new RuntimeException(e);} finally {if (metadata != null) {// =====阻塞=======System.out.println("同步⽅式发送消息结果:" + "topic-" +metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" +metadata.offset());}}}
}

3.发送消息到指定分区

image-20230814170847906

4.发送消息未指定分区

发送消息未指定分区,会通过业务key的hash运算,算出消息往哪个分区上发

// 未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNum
ProducerRecord<String, String> producerRecord = newProducerRecord<>(TOPIC_NAME, order.getOrderId().toString(), JSON.toJSONString(order));

5.同步发送消息

image-20230814172356139

如果生产者发送消息没有收到ack,生产者会阻塞,阻塞到3s的时间,如果还没有收到消息,会进行重试。重试的次数3次。

    RecordMetadata metadata = producer.send(producerRecord).get();System.out.println("同步⽅式发送消息结果:" + "topic-" +metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" + metadata.offset());

6.异步发送消息

image-20230814173250894

异步发送,生产者发送完消息后就可以执行之后的业务,broker在收到消息后异步调用生产者提供的callback回调方法。

            // 异步发送消息 Callback回调接口producer.send(producerRecord, new Callback() {// 异步回调方法@Overridepublic void onCompletion(RecordMetadata metadata, Exception e) {if (e != null) {System.err.println("发送消息失败:" +e.getMessage());}if (metadata != null) {System.out.println("异步⽅式发送消息结果:" + "topic-" +metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" + metadata.offset());}}});System.out.println("处理之后的逻辑~");

输出结果:

image-20230814173709486

7.生产者中的ack的配置

在同步发消息的场景下:生产者发送消息到broker上后,ack会有3种不同的选择

  • ack = 0 :kafka-cluster不需要任何的broker收到消息,就立即返回ack给生产者就可以继续发送下一条消息,效率是最高的但最容易丢消息
  • ack=1(默认):多副本之间的leader已经收到消息,并把消息写⼊到本地的log中,才会返回ack给生产者,性能和安全性是最均衡的(这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失)
  • ack=-1/all:需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志才会返回ack给生产者,这种策略会保证只要有⼀个备份存活就不会丢失数据。这种方式最安全但性能最差。(⼀般除非是金融级别,或跟钱打交道的场景才会使用这种配置)

image-20230814175916962

code:

props.put(ProducerConfig.ACKS_CONFIG, "1");

关于ack和重试(如果没有收到ack,就开启重试)的配置

  • 发送会默认会重试3次,每次间隔100ms
props.put(ProducerConfig.ACKS_CONFIG, "1");/*发送失败会重试,默认重试间隔100ms,【重试能保证消息发送的可靠性,但是也可能造成消息重复发送】,⽐如⽹络抖动,所以【需要在接收者那边做好消息接收的幂等性处理】*/props.put(ProducerConfig.RETRIES_CONFIG, 3);// 重试间隔设置props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);

8.关于消息发送的缓冲区

发送的消息会先进入到本地缓冲区(32mb),kakfa会跑⼀个线程,该线程去缓冲区中取16k的数据,发送到kafka,如果到10毫秒数据没取满16k,也会发送⼀次。

image-20230814180715793

  • kafka默认会创建一个消息缓冲区,用来存放要发送的消息,缓冲区是32m
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
  • kafka本地线程会去缓冲区中⼀次拉16k的数据,发送到broker
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
  • 如果线程拉不到16k的数据,间隔10ms也会将已拉到的数据发到broker
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);

消费者

1.消费者消费消息的基本实现

public class MyConsumer {private final static String TOPIC_NAME = "my-replicated-topic";private final static String CONSUMER_GROUP_NAME = "testGroup";public static void main(String[] args) {Properties props = new Properties();props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"124.222.253.33:9092,124.222.253.33:9093,124.222.253.33:9094");// 消费分组名props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());// 1.创建⼀个消费者的客户端try (KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props)) {// 2.消费者订阅主题列表consumer.subscribe(Collections.singletonList(TOPIC_NAME));while (true) {/** 3.poll()API 是拉取消息的⻓轮询*/ConsumerRecords<String, String> records =consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {// 4.操作消息System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n ", record.partition(), record.offset(), record.key(), record.value());}}} catch (Exception e) {throw new RuntimeException(e);}}
}

2.消费者自动提交和手动提交offset

1)提交的内容

消费者无论是自动提交还是手动提交,都需要把所属的消费组+消费的某个主题+消费的某个分区及消费的偏移量,这样的信息提交到集群的_consumer_offsets主题里面。

2)自动提交

消费者poll消息下来以后就会自动提交offset

// 是否自动提交offset,默认就是true
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
// 自动提交offset的间隔时间
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");

注意自动提交会丢消息。因为消费者在消费前提交offset,有可能提交完后还没消费时消费者挂了。于是下⼀个消费者会从已提交的offset的下一个位置开始消费消息。之前未被消费的消息就丢失掉了。

3)手动提交

需要把自动提交的配置改成false

props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");

手动提交又分成了两种

  • 手动同步提交

在消费完消息后调用同步提交的方法,当集群返回ack前⼀直阻塞,返回ack后表示提交成功,执行之后的逻辑

            while (true) {/** poll()API 是拉取消息的⻓轮询*/ConsumerRecords<String, String> records =consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {// 操作消息System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n ", record.partition(), record.offset(), record.key(), record.value());}// 所有的消息已消费完if (records.count() > 0) {// 有消息// ⼿动同步提交offset,当前线程会阻塞直到offset提交成功// 【⼀般使⽤同步提交】,因为提交之后⼀般也没有什么逻辑代码了consumer.commitSync();// =======阻塞=== 提交成功}}
  • 手动异步提交

在消息消费完后提交,不需要等到集群ack,直接执行之后的逻辑,可以设置⼀个回调方法,供集群调用

            while (true) {/** poll()API 是拉取消息的⻓轮询*/ConsumerRecords<String, String> records =consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {// 操作消息System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n ", record.partition(), record.offset(), record.key(), record.value());}// 所有的消息已消费完if (records.count() > 0) {// 有消息// ⼿动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后⾯的程序逻辑consumer.commitAsync(new OffsetCommitCallback() {@Overridepublic void onComplete(Map<TopicPartition,OffsetAndMetadata> offsets, Exception exception) {if (exception != null) {System.err.println("Commit failed for " + offsets);System.err.println("Commit failed exception: " + exception.getMessage());}}});}}

3.长轮询poll消息(消费者拉取消息)

  • 消费者建立了与broker之间的长连接,开始poll消息

  • 默认情况下,消费者一次会poll500条消息

// ⼀次poll最⼤拉取消息的条数,可以根据消费速度的快慢来设置
props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500);
  • 代码中设置了长轮询的时间是1000毫秒
            while (true) {/** poll()API 是拉取消息的⻓轮询*/ConsumerRecords<String, String> records =consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.printf("收到消息:partition = %d,offset = %d, key = %s, value = %s%n ", record.partition(), record.offset(), record.key(), record.value());}}
  • 意味着:
    • 如果⼀次poll到500条,就直接执行for循环
    • 如果这⼀次没有poll到500条。且时间在1秒内,那么长轮询继续poll,要么到500条,要么到1s,执行后续for循环
    • 如果多次poll都没达到500条,且1秒时间到了,那么直接执行for循环
    • 如果两次poll的间隔超过30s(poll时间短但是消费时间长,消费者消费可能会达到30s左右),集群会认为该消费者的消费能力过 弱,该消费者被踢出消费组,触发rebalance机制,rebalance机制会造成性能开销

可以通过设置参数, 让⼀次poll的消息条数少⼀点,避免触发rebalance损耗性能

 // ⼀次poll最⼤拉取消息的条数,可以根据消费速度的快慢来设置props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500);// 如果两次poll的时间如果超出了30s的时间间隔,kafka会认为其消费能⼒过弱,将其踢出消费组。将分区分配给其他消费者。-rebalanceprops.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);

4.消费者的健康状态检查

消费者每隔1s向kafka集群发送心跳,集群发现如果有超过10s没有续约的消费者,将被踢出消费组,触发该消费组的rebalance机制,将该分区交给消费组里的其他消费者进行消费。

// consumer给broker发送心跳的间隔时间  1s一次
props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
// kafka如果超过10秒没有收到消费者的心跳,则会把消费者踢出消费组,进⾏rebalance,把分区分配给其他消费者。
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);

5.指定分区和偏移量、时间消费

  • 指定分区消费
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
  • 从头消费
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
  • 指定offset消费
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seek(new TopicPartition(TOPIC_NAME, 0), 10);
  • 指定时间消费

根据时间,去所有的partition中确定该时间对应的offset,然后去所有的partition中找到该offset之后的消息开始消费。

// topic对应所有分区
List<PartitionInfo> topicPartitions = consumer.partitionsFor(TOPIC_NAME);
// 从1小时前开始消费
long fetchDataTime = new Date().getTime() - 1000 * 60 * 60;
Map<TopicPartition, Long> map = new HashMap<>();
for (PartitionInfo par : topicPartitions) {map.put(new TopicPartition(TOPIC_NAME, par.partition()), fetchDataTime);
}
Map<TopicPartition, OffsetAndTimestamp> parMap = consumer.offsetsForTimes(map);
for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry : parMap.entrySet()) {TopicPartition key = entry.getKey();OffsetAndTimestamp value = entry.getValue();if (key == null || value == null) continue;long offset = value.offset();System.out.println("partition-" + key.partition() +"|offset-" + offset);System.out.println();//根据消费⾥的timestamp确定offsetconsumer.assign(Arrays.asList(key));consumer.seek(key, offset);
}

6.新消费组的消费offset规则

新消费组中的消费者在启动以后,默认会从当前分区的最后⼀条消息的offset+1开始消费(消费新消息)。可以通过以下的设置,让新的消费者第⼀次从头开始消费。之后开始消费新消息(最后消费的位置的偏移量+1)

  • Latest:默认的,消费新消息

  • earliest:第⼀次从头开始消费。之后开始消费新消息(最后消费的位置的偏移量+1),这个需要区别于consumer.seekToBeginning(每次都从头开始消费)

props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");

SpringBoot集成kafka

1.引入依赖

        <dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId></dependency>

2.配置文件

server:port: 8080
spring:kafka:bootstrap-servers: 124.222.253.33:9092,124.222.253.33:9093,124.222.253.33:9094producer: # 生产者retries: 3 # 设置大于0的值,则客户端会将发送失败的记录重新发送batch-size: 16384 # 每次拉取多少数据发送broker buffer-memory: 33554432 # 本地缓冲区大小acks: 1# 指定消息key和消息体的编解码⽅式key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializerconsumer:group-id: default-groupenable-auto-commit: falseauto-offset-reset: earliestkey-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializermax-poll-records: 500listener:# 当每⼀条记录被消费者监听器(ListenerConsumer)处理之后提交# RECORD# 当每⼀批poll()的数据被消费者监听器(ListenerConsumer)处理之后提交# BATCH# 当每⼀批poll()的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于TIME时提交# TIME# 当每⼀批poll()的数据被消费者监听器(ListenerConsumer)处理之后,被处理record数量大于等于COUNT时提交# COUNT# TIME | COUNT 有⼀个条件满足时提交# COUNT_TIME# 当每⼀批poll()的数据被消费者监听器(ListenerConsumer)处理之后, 手动调用Acknowledgment.acknowledge()后提交# MANUAL# 【手动调用Acknowledgment.acknowledge()后立即提交,⼀般使用这种】# MANUAL_IMMEDIATEack-mode: MANUAL_IMMEDIATE

3.消息生产者

发送消息到指定topic

image-20230815110653415

4.消息消费者

设置消费组,消费指定topic

@Component
public class MyConsumer {@KafkaListener(topics = "my-replicated-topic", groupId = "MyGroup1")public void listenGroup(ConsumerRecord<String, String> record,Acknowledgment ack) {String value = record.value();System.out.println(record);System.out.println(value);//⼿动提交offsetack.acknowledge();}
}

5.消费者中配置消费主题、分区和偏移量

设置消费组、多topic、指定分区、指定偏移量消费及设置消费者个数

    @KafkaListener(groupId = "testGroup", topicPartitions = {@TopicPartition(topic = "topic1", partitions = {"0", "1"}),@TopicPartition(topic = "topic2", partitions = "0",partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))}, concurrency = "3")// concurrency:同消费组中消费者个数,就是并发消费数,建议小于等于分区总数public void listenGroupPro(ConsumerRecord<String, String> record,Acknowledgment ack) {String value = record.value();System.out.println(value);System.out.println(record);//⼿动提交offsetack.acknowledge();}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/91917.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 热题 100(四):48. 旋转图像、240. 搜索二维矩阵 II、234. 回文链表

一.48. 旋转图像 题目要求&#xff1a;就是一个顺时针的旋转过程。 思路&#xff1a;观察矩阵&#xff0c;得出翻转前第i行的第J个元素 等于 翻转后倒数第i列的第J个元素&#xff0c;举例说明&#xff0c;第1行第2个元素为“2”&#xff0c;翻转后到了 倒数第1列的第2个元素…

Ghost-free High Dynamic Range Imaging withContext-aware Transformer

Abstract 高动态范围(HDR)去鬼算法旨在生成具有真实感细节的无鬼HDR图像。 受感受野局部性的限制&#xff0c;现有的基于CNN的方法在大运动和严重饱和度的情况下容易产生重影伪影和强度畸变。 本文提出了一种新的上下文感知视觉转换器&#xff08;CA-VIT&#xff09;用于高动态…

共读《科研论文配图绘制指南--基于Python》学习重点

Book 《科研论文配图绘制指南–基于Python》 特别提示 学习内容&#xff08;书籍前3章&#xff09;开营时在群内以PDF形式发放 课程背景 系统地介绍基于Python的科研论文配图的绘制技巧&#xff0c;提高科研工作者的绘图效率&#xff1b; 100多种图形的详细绘制方法&#…

ssh做端口转发

问题 主机1能访问外网&#xff0c;主机2 不能访问外网外部主机想要访问主机2 解决 在主机1和主机2之间建隧道。 在主机1上做本地端口转发。可以用ssh来做本地端口转发(转发到远端)。 方法&#xff1a; 在&#xff08;本地&#xff09;主机1上执行 ssh -C -f -N -g -L 10.…

在Excel中将数值差距极大的两个序列用对比明显的折线图表示

在Excel中&#xff0c;如果两个数据序列的数值差距太大&#xff0c;用这样的数据序列生成折线图时&#xff0c;折线图会显得过于平缓&#xff0c;趋势对比不明显。如下图&#xff1a; 这时候只要将趋势图设置成双坐标轴&#xff0c;将其中一条趋势线绘制到次坐标轴上&#xff0…

TCP/IP协议追层分析物理层(第三十九课)

TCP/IP协议追层分析物理层(第三十九课) 1 物理层:建立、维护、断开物理连接,定义了接口及介质,实现了比特流的传输。 1、传输介质分类 有线介质:网线(双绞线)、光纤 无线介质:无线电 微波 激光 红外线 2、双绞线分类: 五类cat5: 适用于100Mbps 超五类cat5e:适用于…

Mybatis 源码 ∞ :杂七杂八

文章目录 一、前言二、TypeHandler三、KeyGenerator四、Plugin1 Interceptor2 org.apache.ibatis.plugin.Plugin3. 调用场景 五、Mybatis 嵌套映射 BUG1. 示例2. 原因3. 解决方案 六、discriminator 标签七、其他1. RowBounds2. ResultHandler3. MapKey 一、前言 Mybatis 官网…

Elasticsearch:如何在 Ubuntu 上安装多个节点的 Elasticsearch 集群 - 8.x

Elasticsearch 是一个强大且可扩展的搜索和分析引擎&#xff0c;可用于索引和搜索大量数据。 Elasticsearch 通常用于集群环境中&#xff0c;以提高性能、提供高可用性并实现数据冗余。 在本文中&#xff0c;我们将讨论如何在 Ubuntu 20.04 上安装和配置具有多节点集群的 Elast…

item_review-获得淘宝商品评论

一、接口参数说明&#xff1a; item_review-获得淘宝商品评论&#xff0c;点击更多API调试&#xff0c;请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/taobao/item_review 名称类型必须描述keyString是调用key&#xff08;点击获…

1269. 停在原地的方案数

链接&#xff1a; ​​​​​​1269. 停在原地的方案数 题解&#xff1a;坐标型动态规划 class Solution { public:int numWays(int steps, int arrLen) {if (arrLen < 0) {return 0;}// 因为需要返回到0下标位置所以&#xff0c;最远也就是一半int len std::min(steps/…

linux下的lld命令

Linux下的lld命令的主要作用&#xff1a;用来查看程式运行所需的共享库&#xff08;动态链接库&#xff09;,常用来解决程式因缺少某个库文件而不能运行的一些问题。 1、首先ldd不是一个可执行程序&#xff0c;而只是一个shell脚本 2、ldd 的使用 lld 可执行程序或者动态库…

构建之法 - 软件工程实践教学:一线教师的13问

福州大学单红老师的软工课程总结 2020春&#xff0c;不一样的学期不一样的软工实践 单红⽼师在总结中&#xff0c;提出了13条疑惑&#xff0c;《构建之法》的作者邹欣⽼师就单红⽼师提出的每⼀条疑惑&#xff0c;给出了⾃⼰的思考&#xff0c;与他进⾏探讨交流。欢迎你也来参与…

【C语言】memset()函数

一.memset()函数简介 我们先来看一下cplusplus.com - The C Resources Network网站上memset()函数的基本信息&#xff1a; 1.函数功能 memset()函数的功能是:将一块内存空间的每个字节都设置为指定的值。 这个函数通常用于初始化一个内存空间&#xff0c;或者清空一个内存空间…

[HDLBits] Exams/m2014 q4c

Implement the following circuit: module top_module (input clk,input d, input r, // synchronous resetoutput q);always(posedge clk) beginif(r) q<1b0;elseq<d;end endmodule

MySQL运维MySQL读写分离

查看当前从库的状态 一主一从 1 3 上一样的 指定一个逻辑库 逻辑库不用指定逻辑表 当前逻辑库对应的数据节点 用balance2 是随机的

多种求组合数算法

目录 求组合数Ⅰ&#xff08;递推&#xff09;核心理论理论推导典型例题代码实现 求组合数Ⅱ&#xff08;预处理&#xff09;核心理论典型例题代码实现 求组合数Ⅲ&#xff08;Lucas定理&#xff09;核心理论Lucas定理的证明1.证明Lucas定理的第一形式2.证明Lucas定理的第二形式…

实战指南,SpringBoot + Mybatis 如何对接多数据源

系列文章目录 MyBatis缓存原理 Mybatis plugin 的使用及原理 MyBatisSpringboot 启动到SQL执行全流程 数据库操作不再困难&#xff0c;MyBatis动态Sql标签解析 从零开始&#xff0c;手把手教你搭建Spring Boot后台工程并说明 Spring框架与SpringBoot的关联与区别 Spring监听器…

k8s集群部署vmalert和prometheusalert实现钉钉告警

先决条件 安装以下软件包&#xff1a;git, kubectl, helm, helm-docs&#xff0c;请参阅本教程。 1、安装 helm wget https://xxx-xx.oss-cn-xxx.aliyuncs.com/helm-v3.8.1-linux-amd64.tar.gz tar xvzf helm-v3.8.1-linux-amd64.tar.gz mv linux-amd64/helm /usr/local/bin…

Pycharm找不到Conda可执行文件路径(Pycharm无法导入Anaconda已有环境)

在使用Pycharm时发现无法导入Anaconda创建好的环境&#xff0c;会出现找不到Conda可执行文件路径的问题。 解决 在输入框内输入D:\anaconda3\Scripts\conda.exe&#xff0c;点击加载环境。 注意前面目录是自己Anaconda的安装位置&#xff0c;之后就可以找到Anaconda的现有环…

嵌入式电火花线切割控制系统总体设计

2.1 电火花线切割机床的特点与结构 电火花线切割加工&#xff08; Wire Cut EDM &#xff09;是特种加工中电火花加工方式的一种&#xff0c;是 直接利用电能或热能进行加工的工艺方法。加工基本原理是利用在导丝架固定的轨 道上连续移动电极丝&#xff08;钼丝 / 铜丝&…