实验三 图像分割与描述

一、实验目的:
(1)进一步掌握图像处理工具Matlab,熟悉基于Matlab的图像处理函数。
(2)掌握图像分割方法,熟悉常用图像描述方法。
二、实验原理
1.肤色检测
肤色是人类皮肤重要特征之一,在检测人脸或手等目标时常采用肤色检测的方法,将相关区域从图像中分割出来。
肤色检测方法:
肤色检测方法有很多,但无论是基于不同的色彩空间还是不同的肤色模型,其根本出发点在于肤色分布的聚集性,即肤色的颜色分量一般聚集在某个范围内。通过大量的肤色样本进行统计,找出肤色颜色分量的聚集范围或用特殊的分布模型去模拟肤色分布,进而实现对任意像素颜色的判别。
不同彩色空间肤色分布范围:
① RGB彩色空间
据统计资料,肤色在RGB模型中的分布范围基本满足以下条件:
(1)在均匀光照下:R>95且G>40且B>20 且 max{R,G,B}一min{R,G,B}>15且|R一G|>15且R>G且R>B。
(2)在闪光或侧向照明环境下:R>220且G>210且B>170且|R一G≤15且R>B且G>B。
② YCbCr彩色空间
据统计资料,肤色在YCbCr空间的分布范围为77≤C,≤127,133≤C,≤173。
③ HSV彩色空间
HSV空间建立的肤色模型要求满足0°≤H≤25°或335°≤H≤360°且0.2≤S≤0.6且0.4V。
肤色模型
肤色模型是根据大量样本的统计数据建立以确定肤色的分布规律,进而判断像素的色彩是否属于肤色或与肤色相似程度的模型。常用的有阙值模型、高斯模型和椭圆模型。
1)阈值模型
國值模型是用数学表达式明确肤色分布范围的建模方法。这类方法依据肤色分布范围进行检测,判断简单、明确、快捷,但需要选择合适的颜色空间及合适的参数。
2)高斯肤色模型
利用高斯函数模拟肤色在CbCr色度空间的分布。
在这里插入图片描述

其实,
在这里插入图片描述

为色度向量的均值和协方差矩阵,可通过多种方式获取,数值略有区别。
2.图像平滑
图像平滑是指受传感器和大气等因素的影响,遥感图像上会出现某些亮度变化过大的区域,或出现一些亮点(也称噪声)。这种为了抑制噪声,使图像亮度趋于平缓的处理方法就是图像平滑。图像平滑实际上是低通滤波,平滑过程会导致图像边缘模糊化。
图像平滑的方法包括:插值方法,线性平滑方法,卷积法等等。这样的处理方法根据图像噪声的不同进行平滑,比如椒盐噪声,就采用线性平滑方法!
3.皮肤区域分割
所采取的肤色分割的方法为:首先根据肤色在RGB空间分布统计进行初略非肤色过滤,初步去除图像中的非肤色;然后根据肤色在CgCr空间分布范围统计,进行肤色的第二次分割,获取肤色分割图像;在对肤色区域进行中值滤波,提高肤色检测率。
⑴基于RGB空间非肤色像素的初步过滤
对于图像中一些非肤色的像素点,若呈现过红、过蓝、过绿等特征,可通过设置取值范围初步过滤这些非肤色像素点。具体操作过程如下:
①据统计,人眼的像素具有特征:R<70,G<40,B<20.这样使得眼睛更加容易提取像素,减少亮度低的像素被误判为肤色像素的概率。
②据统计,过红、过绿像素大多具有特征R+G>500,可剔除这些像素点。
③据统计,当R<160,G<160,B<160,过红、过绿像素大多数具有R>G>B,可剔除这些像素点。
⑵基于YCgCr空间的肤色分割
肤色YCbCr颜色空间是一种常用的肤色检测的色彩模型,其中Y代表亮度,Cr代表光源中的红色分量,Cb代表光源中的蓝色分量。人的肤色在外观上的差异是由色度引起的,不同人的肤色分布集中在较小的区域内。肤色的YCbCr颜色空间CbCr平面分布在近似的椭圆区域内,通过判断当前像素点的CbCr是否落在肤色分布的椭圆区域内,就可以很容易地确认当前像素点是否属于肤色。将图像转换到YCbCr空间并且在CbCr平面进行投影,可以采集到肤色的样本点。

将CbCr平面均分为许多小区域,将每个区域的中心点CbCr色度值作为当前区域的特征值,对肤色区域像素值进行遍历,如果当前像素值落在该区域内则替换当前区域特征值。
RGB转换为YCbCr
在这里插入图片描述

4.图像融合
图像融合(Image Fusion) 是指综合多幅输入图像的信息,以获得更高质量输出图 像的过程与融合前的多幅图像相比,融合后的图像应更加适于进一步的观察或处理。图像融合属于数字图像处理领域,在计算摄影学中,用于拍摄所得图像的后期处理。
5.图像锐化
图像锐化也称边缘增强。锐化技术用于加强图像中的边界和细节信息。由于边界和细节信息对应频域中的高频部分,所以在频域中通常对图像进行高通滤波,在空间域则进行微分处理。为增加细节信息,采用了拉普拉斯算子进行图像锐化。
Laplace算子
拉普拉斯(Laplace)是著名物理学家和数学家,laplace定义如下:
在这里插入图片描述
对于离散函数f(i,j),laplace算子定义为:
在这里插入图片描述

因为
在这里插入图片描述

同理可得:
在这里插入图片描述

由此可得Laplace算子矩阵为:
在这里插入图片描述
三、实验步骤(包括分析、代码和波形)
首先来看看这个实验的内容。利用人物正面照,参考例7.15实现皮肤美化处理,要求:
(1)滤波、色彩空间、代数运算、锐化等技术实现美化
(2)加入皮肤的亮白处理
(3)尝试其他肤色检测处理。
要求:实验报告一份,源程序一份,实验效果对比图;

实验的思路是很明确的,结合原理中的讨论,我们只要按照题目的要求依据参考代码、查看运行并进行验证就可以了,不需要计算。
下面是第(1)小题的代码。滤波、色彩空间、代数运算、锐化等技术实现美化;

clear,clc,close all;
ImageOrigin=im2double(imread('face.jpg'));
figure,imshow(ImageOrigin),title('原图');
DBImage=DBfilt(ImageOrigin);SkinImage1=FirstFilter(ImageOrigin);            %%初步过滤
SkinArea=SecondFilter(SkinImage1);           %%YCgCr空间范围肤色检测SkinFuse=Fuse(ImageOrigin,DBImage,SkinArea);
SkinBeautify=Sharp(SkinFuse);function Out=DBfilt(In)[height,width,c] = size(In); win=15;       % 定义双边滤波窗口宽度  sigma_s=6; sigma_r=0.1; % 双边滤波的两个标准差参数  [X,Y] = meshgrid(-win:win,-win:win); Gs = exp(-(X.^2+Y.^2)/(2*sigma_s^2));%计算邻域内的空间权值    Out=zeros(height,width,c); for k=1:cfor j=1:height    for i=1:width  temp=In(max(j-win,1):min(j+win,height),max(i-win,1):min(i+win,width),k);Gr = exp(-(temp-In(j,i,k)).^2/(2*sigma_r^2));%计算灰度邻近权值        % W为空间权值Gs和灰度权值Gr的乘积       W = Gr.*Gs((max(j-win,1):min(j+win,height))-j+win+1,(max(i-win,1):min(i+win,width))-i+win+1);      Out(j,i,k)=sum(W(:).*temp(:))/sum(W(:));            endend  endfigure,imshow(Out),title('双边滤波');
endfunction Out=FirstFilter(In)Out=In;[height,width,c] = size(In); IR=In(:,:,1); IG=In(:,:,2);IB=In(:,:,3);for j=1:heightfor i=1:widthif (IR(j,i)<160/255 && IG(j,i)<160/255 && IB(j,i)<160) && (IR(j,i)>IG(j,i) && IG(j,i)>IB(j,i))Out(j,i,:)=0;endif IR(j,i)+IG(j,i)>500/255Out(j,i,:)=0;endif IR(j,i)<70/255 && IG(j,i)<40/255 && IB(j,i)<20/255Out(j,i,:)=0;endendendfigure,imshow(Out);title('非肤色初步过滤'); 
endfunction Out=SecondFilter(In)IR=In(:,:,1); IG=In(:,:,2);IB=In(:,:,3);       [height,width,c] = size(In);Out=zeros(height,width);for i=1:widthfor j=1:height  R=IR(j,i); G=IG(j,i); B=IB(j,i);       Cg=(-81.085)*R+(112)*G+(-30.915)*B+128;  Cr=(112)*R+(-93.786)*G+(-18.214)*B+128;         if Cg>=85 && Cg<=135 && Cr>=-Cg+260 && Cr<=-Cg+280       Out(j,i)=1;          endendendOut=medfilt2(Out,[3 3]);figure,imshow(Out),title('YCgCr空间范围肤色检测');    
endfunction Out=Fuse(ImageOrigin,DBImage,SkinArea)Skin=zeros(size(ImageOrigin));Skin(:,:,1)=SkinArea;   Skin(:,:,2)=SkinArea;  Skin(:,:,3)=SkinArea;Out=DBImage.*Skin+double(ImageOrigin).*(1-Skin);figure,imshow(Out);title('肤色与背景图像融合');
end
function Out=Sharp(In)H=[0 -1 0;-1 4 -1;0 -1 0]; %Laplacian锐化模板Out(:,:,:)=imfilter(In(:,:,:),H); Out=Out/3+In;
%     imwrite(Out,'man4.jpg');figure,imshow(Out),title('Laplacia锐化图像');
end

下面是第(2)小题的代码。加入皮肤的亮白处理;

rgb = imread('face.jpg');%读取图片
figure(1),subplot(2,2,1);imshow(rgb);title('原图像');
[m,n,k] = size(rgb); %读取图片大小
hsv = rgb2hsv(rgb); %颜色空间转换
H = hsv(:,:,1); % 色调
S = hsv(:,:,2); % 饱和度
V = hsv(:,:,3); % 亮度
for i = 1:m %遍历每一个像素点,可以根据需要选择自己需要处理的区域for j = 1: nhsv(i,j,3) =1.3* hsv(i,j,3); %1.3是需要增强的倍数,可以根据图片情况动态调整end
endrgb1 = hsv2rgb(hsv); %转为RGB,进行显示
figure(1),subplot(2,2,2);imshow(rgb1);title('加亮图像');

下面是第(3)小题的代码。尝试其他肤色检测处理;

clear,clc,close all;
Image=imread('face.jpg');
figure,imshow(Image),title('原图');
r=double(Image(:,:,1));             % 提取红色分量并转化为高精度
g=double(Image(:,:,2));
b=double(Image(:,:,3));
[N,M]=size(r);                      % 提取矩阵r的大小 NxM
miu=[117.4361 156.5599]';           % 高斯肤色模型均值
sigma=[160.1301 12.1430;12.1430 299.4574];      % 高斯肤色模型协方差矩阵
cbcr=zeros(2,1);                    % 生成 2x1矩阵
SkinCbCrG=zeros(N,M);               % 生成所有值为0的 NxM矩阵用于存放处理后图像
SkinRGB=zeros(N,M);
SkinHSV=zeros(N,M);
SkinCbCr=zeros(N,M);
thresh=0.35;                        % 肤色概率二值化阙值
for i=1:M                           % 循环图像每一个像素点   列循环for j=1:N                       % 行循环R=r(j,i);                    % 将图像红色分量中(j,i)点值赋值给RG=g(j,i);B=b(j,i);if (R>95 && G>40 && B>20 && (R-G)>15 && R-B>15) || ...               % RGB空间肤色检测(R>220 && G>210 && B>170 && R-B<=15 && R>B && G>B)               % 符合RGB肤色检测条件的像素点值置1则为白色,其他不符合条件的像素点为0黑色SkinRGB(j,i)=1;endmaxRGB=max(max(R,G),B);       % 取三分量中同一点最大值minRGB=min(min(R,G),B);       % 取三分量中同一点最小值C=maxRGB-minRGB;              % 取最大差值V=maxRGB;                     % 最大值赋值给参数Vif V==0                       % 比较最大值是否等于零  S=0;elseS=C/V;                    % 最大值不等于零则 C最大差值/V最大值endif maxRGB==R                  % 如果该点最大值==红色分量值;作如下处理H=60*mod((G-B)/C,6);elseif maxRGB==G              % 如果该点最大值==绿色分量值;作如下处理H=60*((B-R)/C+2);elseif maxRGB==B              % 如果该点最大值==蓝色分量值;作如下处理H=60*((R-G)/C+4);end                           % 符合HSV肤色检测 将该点值置1if ((H>=0 && H<=25) || (H>=335 && H<=360)) && (S>=0.2 && S<=0.6) && V>=0.4SkinHSV(j,i)=1;          % 优化 HSV 效果增强?如何改?为什么这样改?endR=R/255;G=G/255;B=B/255;             % RGB 转 YCrCb 公式Cb=224*(-0.1687*R-0.3313*G+0.5*B)+128;Cr=224*(0.5*R-0.4187*G-0.0813*B)+128;if Cb>=77 && Cb<=127 && Cr>=133 && Cr<=173   % 符合 YCrCb肤色检测 将该点值置1SkinCbCr(j,i)=1;endcbcr= [Cb Cr]';                               % YCbCr空间基于高斯模型的肤色检测p=exp(-0.5*((cbcr-miu)')*(inv(sigma))*(cbcr-miu));   % 高斯模型函数if p>thresh                                    % p > 阙值0.35  值置1SkinCbCrG(j,i)=1;endend
end
figure,imshow(SkinRGB),title('RGB空间肤色检测');
figure,imshow(SkinHSV),title('HSV空间肤色检测');
figure,imshow(SkinCbCr),title('YCbCr空间范围肤色检测');
figure,imshow(SkinCbCrG),title('YCbCr空间高斯模型肤色检测');
imwrite(SkinRGB,'skinrgb3.jpg');
imwrite(SkinHSV,'skinhsv3.jpg');
imwrite(SkinCbCr,'skincbcr3.jpg');
imwrite(SkinCbCrG,'skinCbCrG3.jpg');

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/92370.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【分布式】Viewstamped Replication Revisited

篇前感悟&#xff1a; 阅读分布式系统文章的意义其实并不在于你个人真正地去开发这样一个基于这种协议的系统&#xff0c;因为真正去开发一个高可用的分布式系统实在是太难了&#xff08;对我来说…&#xff09;更多的还是汲取其中的思想&#xff0c;包括设计思路&#xff0c;优…

计算机网络:网络字节序

目录 一、字节序1.字节序概念2.字节序的理解&#xff08;1&#xff09;大端模式存储数据&#xff08;2&#xff09;小端模式存储数据 二、网络字节序 一、字节序 1.字节序概念 字节序&#xff1a;内存中存储多字节数据的顺序。 难道存储数据还要看顺序吗&#xff1f; yes。内…

Opencv-C++笔记 (17) : 模板匹配

文章目录 1--概念2-- 方法3 结果3.1 ROI区域的获取使用自适应目标匹配 1–概念 opencv 提供了一个专门用于模板匹配的函数 cv::matchTemplate();其调用方式如下&#xff1a; void cv::matchTemplate(cv::InputArray image, // 用于搜索的输入图像, 8U 或 32F, 大小 W-Hcv::Inpu…

2023年初中信息技术学科暑假备课

目录 2023年初中信息技术学科暑假备课1. 创意空间1.1 教师的空间1.2 学生的空间1.3 关于FTP服务器设置 2. 什么是编程2.1 编程语言2.2 人人都应学好编程2.3. 编程难吗&#xff1f;2.4 python用途 3. 开发环境3.1 打开IDLE3.2 IDLE窗口3.2.1 shell窗口和编辑窗口 4. 项目式教学4…

开发测试框架一 - 创建springboot工程及基础操作

一、创建及运行方式 1. 从官网导入&#xff1a; 注意&#xff1a;由于我的java版本是1.8&#xff1b;所以选中了spring2.7.14&#xff1b;如果你的java版本是9及以上&#xff0c;选中spring3相关的同时Java 版本也要对应起来 2. 创建第一个get请求 创建Controller package及…

Golang下载安装

目录 1. 下载压缩包 2. 解压 3. 查看SDK是否安装成功 4. 配置环境变量 5. 查看环境变量是否配置成功 1. 下载压缩包 官网下载地址&#xff1a; All releases - The Go Programming Language Windows64位选择如下下载&#xff1a; 2. 解压 解压后内容如下&#xff1a; …

uniapp-微信小程序篇

uniapp-微信小程序篇 一、创建项目(以Vue3TS 项目为示例) 可以通过命令行的方式创建也可以通过HBuilderX进行创建&#xff08;通过HBuilderX创建的项目建议选择最简单的模板&#xff09;&#xff0c;个人建议使用命令行方式。 (1) 命令行方式&#xff1a; npx degit dcloudio…

Vue3实现图片懒加载及自定义懒加载指令

Vue3实现图片懒加载及自定义懒加载指令 前言1.使用vue3-lazyload插件2.自定义v-lazy懒加载指令2.1 使用VueUse2.2 使用IntersectionObserver 前言 图片懒加载是一种常见性能优化的方式&#xff0c;它只去加载可视区域图片&#xff0c;而不是在网页加载完毕后就立即加载所有图片…

CentOS 7 下 Keepalived + Nginx 实现双机高可用

CentOS 7 下 Keepalived Nginx 实现双机高可用 文章目录 CentOS 7 下 Keepalived Nginx 实现双机高可用服务器准备服务信息服务架构 服务安装nginxKeepalived 服务配置nginxKeepalived 启动服务nginxkeepalived 服务验证查看 VIP 状态CURL 命令访问浏览器访问 高可用验证停止…

(7)(7.1) 使用航点和事件规划任务

文章目录 前言 7.1.1 设置Home位置 7.1.2 视频&#xff1a;制作并保存多路点任务 7.1.3 视频&#xff1a;加载已保存的多航点任务 7.1.4 使用说明 7.1.5 提示 7.1.6 自动网格 7.1.7 任务指令 7.1.8 任务结束 7.1.9 任务重置 7.1.10 MIS_OPTIONS 7.1.11 任务再出发 …

时序预测 | MATLAB实现基于CNN卷积神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于CNN卷积神经网络的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于CNN卷积神经网络的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 1.Matlab实现CNN卷积神经网络时间序列预测未…

docker 学习--03 环境安装(本人使用的win10 Linux也是在win10下模拟)

docker 学习–03 环境安装&#xff08;本人使用的win10 Linux也是在win10下模拟&#xff09; docker 学习-- 01 基础知识 docker 学习-- 02 常用命令 文章目录 docker 学习--03 环境安装&#xff08;本人使用的win10 Linux也是在win10下模拟&#xff09;[TOC](文章目录) 1. wi…

深入源码分析kubernetes informer机制(二)Reflector

[阅读指南] 这是该系列第二篇 基于kubernetes 1.27 stage版本 为了方便阅读&#xff0c;后续所有代码均省略了错误处理及与关注逻辑无关的部分。 文章目录 Reflector是什么整体结构工作流程list拉取数据缓存resync操作watch监听操作 总结 Reflector是什么 reflector在informer…

如何实现安全上网

l 场景描述 政府、军工、科研等涉密单位或企业往往要比其他组织更早接触高精尖的技术与产品&#xff0c;相对应的数据保密性要求更高。常规的内外网物理隔离手段&#xff0c;已经满足不了这些涉密单位的保密需求&#xff0c;发展到现在&#xff0c;需求已经演变成既要保证网络…

(十六)大数据实战——安装使用mysql版的hive服务

前言 hive默认使用的是内嵌据库derby&#xff0c;Derby 是一个嵌入式数据库&#xff0c;可以轻松地以库的形式集成到应用程序中。它不需要独立的服务器进程&#xff0c;所有的数据存储在应用程序所在的文件系统中。为了支持hive服务更方便的使用&#xff0c;我们使用mysql数据…

【数据结构】“栈”的模拟实现

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …

MySQL 索引 详解(保姆级教程)

一、索引概述 索引是帮助 MySQL 高效获取数据的数据结构&#xff08;有序&#xff09;。在数据之外&#xff0c;数据库系统还维护着满足特定查找算法的数据结构&#xff0c;这些数据结构以某种方式引用&#xff08;指向&#xff09;数据&#xff0c;这样就可以在这些数据结构上…

本地oracle登录账号锁定处理,the account is locked

1.打开cmd命令窗口 2.打开sqlplus: sqlplus /nolog(加/nolog是不登录服务器的意思&#xff0c;不加就需要输账号密码) 3.切换到管理员&#xff1a;conn / as sysdba; 第2步第3步可以合并&#xff0c;直接使用sysdba登录&#xff1a;sqlplus / as sysdba; 4.解锁账号&#x…

Python web实战之Django 的 WebSocket 支持详解

关键词&#xff1a;Python, Django, WebSocket, Web 如何使用 Django 实现 WebSocket 功能&#xff1f;本文将详细介绍 WebSocket 的概念、Django 的 WebSocket 支持以及如何利用它来创建动态、响应式的 Web 应用。 1. WebSocket 简介 1.1 什么是 WebSocket&#xff1f; 在 W…

阿里云FRP内网穿透挂载多台服务器

1. FRP介绍 FRP (Fast Reverse Proxy) 是比较流行的一款。FRP 是一个免费开源的用于内网穿透的反向代理应用&#xff0c;它支持 TCP、UDP 协议&#xff0c; 也为 http 和 https 协议提供了额外的支持。你可以粗略理解它是一个中转站&#xff0c; 帮你实现 公网 ←→ FRP(服务器…