【数学建模】清风数模更新5 灰色关联分析

灰色关联分析综述

诸如经济系统、生态系统、社会系统等抽象系统都包含许多因素,系统整体的发展受各个因素共同影响。

为了更好地推动系统发展,我们需要清楚哪些因素是主要的,哪些是次要的,哪些是积极的,哪些是消极的,这就要求我们进行系统分析。

数理统计中的系统分析方法包括回归分析、方差分析和主成分分析,它们都存在一些不足之处,当数据样本较少时,灰色关联分析方法可以较好地克服那些不足。

因此,当样本个数较大时,一般使用标准化回归;当样本个数较少时,才使用灰色关联分析。

灰色关联分析的基本思想,是根据序列曲线的几何形状的相似程度来判断其联系是否紧密,曲线越接近,相似序列之间的关联度就越大,反之就越小。

接下来我们用两个例题来介绍一下灰色关联分析的两种应用。

应用一:进行系统分析

 第一步:画统计图并分析

 由图可知:

  1. 四个变量均呈上升趋势;
  2. 第二产业的增幅较为明显;
  3. 第二产业和第三产业的差距在后三年相差更大。

第二步:确定分析数列

母序列(参考数列、母指标):能反映系统行为特征的数据序列。类似于因变量Y,这里记作X0

子序列(比较序列、子指标):影响系统行为的因素组成的数据序列。类似于自变量X,记作X1~Xn

在例题中,国内生产总值就是母序列,第一、第二和第三产业就是子序列。

第三步:对变量进行预处理

目的:去量纲,缩小变量范围以简化计算。

对母序列和子序列中的每个指标进行预处理先求出每个指标的均值,再用该指标的每个元素除以其均值

 第四步:计算子序列中各个指标与母序列的关联系数

 第五步:求出灰色关联度

 第六步:比较关联度,得出结论

对这个例题来说,该地区在2000年至2005年间的国内生产总值受到第三产业的影响最大(其灰色关联度最大)。

代码

clear;clc
load gdp.mat  % 导入数据 一个6*4的矩阵
Mean = mean(gdp);  % 求出每一列的均值以供后续的数据预处理
gdp = gdp ./ repmat(Mean,size(gdp,1),1);  %size(gdp,1)=6, repmat(Mean,6,1)可以将矩阵进行复制,复制为和gdp同等大小,然后使用点除(对应元素相除)
disp('预处理后的矩阵为:'); disp(gdp)
Y = gdp(:,1);  % 母序列
X = gdp(:,2:end); % 子序列
absX0_Xi = abs(X - repmat(Y,1,size(X,2)))  % 计算|X0-Xi|矩阵(在这里我们把X0定义为了Y)
a = min(min(absX0_Xi))    % 计算两级最小差a
b = max(max(absX0_Xi))  % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi  + rho*b)  % 计算子序列中各个指标与母序列的关联系数
disp('子序列中各个指标的灰色关联度分别为:')
disp(mean(gamma))

应用二:综合评价问题

题目:评价下表中20条河流的水质情况。(用Topsis结合熵权法也可以解决)

 解题步骤

  1. 对指标正向化
  2. 对正向化后的矩阵进行预处理
  3. 将预处理后的矩阵每一行取出最大值构成母序列
  4. 计算各个指标与母序列的灰色关联度
  5. 计算各个指标灰色关联度的权重
  6. 计算各个评价对象的得分(用权重计算)
  7. 对得分进行归一化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/92546.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

@RequestHeader使用

RequestHeader 请求头参数的设置 GetMapping("paramTest/requestHeader")public String requestHeaderTest(RequestHeader("name") String name){return name;} 在Postman的Headers中添加请求头参数,不过貌似不能加中文

DMA技术

先总结: DMA是指外部设备不通过CPU而直接与系统内存交换数据的接口技术 主要工作是由DMA控制器来完成的. 下面开始正文 ---------------------------------------------------------------------------- 1、DMA由来 DMA(Direct Memory Access,直接存储器访问)。在&#xf…

Java基础篇--错误处理机制

尽管人人希望自己身体健康,处理的事情都能顺利进行,但在实际生活中总会遇到各种状况,比如感冒发烧,工作时电脑蓝屏、死机等。同样,在程序运行的过程中,也会发生各种非正常状况,例如,…

【腾讯云 Cloud Studio 实战训练营】Hexo 框架 Butterfly 主题搭建个人博客

什么是Cloud Studio Cloud Studio 是基于浏览器的集成式开发环境(IDE),为开发者提供了一个永不间断的云端工作站。用户在使用 Cloud Studio 时无需安装,随时随地打开浏览器就能在线编程。 ​ Hexo 博客成品展示 本人博客如下&…

14-矩阵相乘及其运算法则

矩阵与向量的乘法 在这一篇文章中我们就将基于上一篇重新审视矩阵的这个视点来理解矩阵的乘法,那么在这一篇,我们主要来看一下矩阵和向量的乘法。这里这个线性方程组是上一小节给大家举的模拟的一个非常简单的小型经济系统的例子,我们可以把…

【JAVA】变量的作用域与生存周期

个人主页:【😊个人主页】 系列专栏:【❤️初识JAVA】 文章目录 前言变量的作用域变量的生命周期局部变量全局变量 前言 变量,我们学习过程中逃不掉的知识,无论在哪种语言中我们都需要学会去合理的运用它,今…

IP 协议的相关特性和数据链路层相关知识总结

目录 IP 协议的相关特性 一、IP协议的特性 二、 IP协议数据报格式 三、 IP协议的主要功能 1. 地址管理 动态分配 IP地址 NAT机制 NAT背景下的通信 IPV6 2. 路由控制​​​​​​​ 3.IP报文的分片与重组 数据链路层相关知识 1、以太网协议(Ethernet) 2.M…

Java:正则表达式案例:爬数据,重复数据替换,数据分割

使用正则表达式查找一段文本中的内容 需求:请把下面文本中的电话,邮箱,座机号码,热线都爬取出来。 String data "电话:1866668888,18699997777\n" "或者联系邮箱: boniuitcast.cn,\n" "座机…

Spring的三种异常处理方式

1.SpringMVC 异常的处理流程 异常分为编译时异常和运行时异常,编译时异常我们 try-cache 进行捕获,捕获后自行处理,而运行时异常是不 可预期的,就需要规范编码来避免,在SpringMVC 中,不管是编译异常还是运行…

OpenCV-Python中的图像处理-霍夫变换

OpenCV-Python中的图像处理-霍夫变换 霍夫变换霍夫直线变换霍夫圆环变换 霍夫变换 霍夫(Hough)变换在检测各种形状的技术中非常流行,如果要检测的形状可以用数学表达式描述,就可以是使用霍夫变换检测它。即使要检测的形状存在一点破坏或者扭曲也是可以使…

C++——oo的魅力之多态

文章目录 多态的概念多态的定义和实现多态的构成条件虚函数重写的两个例外协变(基类和派生类虚函数返回值类型不同)析构函数的重写(基类和派生类析构函数名字不同) c11 override 和 final关键字 重载,重写(覆盖), 隐藏(重定义)对比抽象类(纯虚函数)多态的…

docker安装及优化详解

目录 一、部署20版的docker 1.1 安装依赖包 1.2 设置阿里云镜像源 1.3 安装docker-ce 社区版 1.4 关闭增强机制 1.5 开启服务 1.6 设置镜像加速 1.7 网络优化 二、linux 系统中的命令 记10条(cd ls pwd mv cp ) 2.1 查询docker 版本 2.2 搜索镜像 2.3 技能点 2.…

实例038 设置窗体在屏幕中的位置

实例说明 在窗体中可以设置窗体居中显示,本例通过设置窗体的Left属性和Top属性可以准确设置窗体的位置。运行本例,效果如图1.38所示。 技术要点 设置窗体在屏幕中的位置,可以通过设置窗体的属性来实现。窗体的Left属性表示窗体距屏幕左侧的…

C语言 字符指针

1、介绍 概念: 字符指针,就是字符类型的指针,同整型指针,指针指向的元素表示整型一样,字符指针指向的元素表示的是字符。 假设: char ch a;char * pc &ch; pc 就是字符指针变量,字符指…

Linux安装Docker

一、Docker系统版本介绍 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 或 Windows 操作系统的机器上,也可以实现虚拟化。 容器是完全使用沙箱机制,相…

常识判断

头像 carrin~👻 产品经理 225/753 75/302.5 30/152 15/101.5 等差数列,所以最后一个是10/101 收起 60 回复 发布于 2020-02-18 16:33

学习篇之React Fiber概念及原理

什么是React Fibber? React Fiber 是 React 框架的一种底层架构,为了改进 React 的渲染引擎,使其更加高效、灵活和可扩展。 传统上,React 使用一种称为堆栈调和递归算法来处理虚拟 DOM 的更新,这种方法在大型应用或者…

React+Typescript清理项目环境

上文 创建一个 ReactTypescript 项目 我们创建出了一个 React配合Ts开发的项目环境 那么 本文 我们先将环境清理感觉 方便后续开发 我们先来聊一下React的一个目录结构 跟我们之前开发的React项目还是有一些区别 public 主要是存放一些静态资源文件 例如 html 图片 icon之类的 …

用于弥散加权MRI的关节各向异性维纳滤光片研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

CentOS系统环境搭建(三)——Centos7安装DockerDocker Compose

centos系统环境搭建专栏🔗点击跳转 Centos7安装Docker&Docker Compose 使用 yum 安装Docker 内核 [rootVM-4-17-centos ~]# uname -r 3.10.0-1160.88.1.el7.x86_64Docker 要求 CentOS 系统的内核版本高于 3.10 更新 yum yum update安装需要的软件包&#x…