stack 、 queue的语法使用及底层实现以及deque的介绍【C++】

文章目录

  • stack的使用
  • queue的使用
  • 适配器
  • queue的模拟实现
  • stack的模拟实现
  • deque

stack的使用

stack是一种容器适配器,具有后进先出,只能从容器的一端进行元素的插入与提取操作
在这里插入图片描述

#include <iostream>
#include <vector>
#include <stack>
using namespace std;int main()
{stack<int, vector<int>> st;st.push(1);st.push(2);st.push(3);st.push(4);cout << st.size() << endl; //4while (!st.empty()){cout << st.top() << " ";st.pop();}cout << endl; //4 3 2 1return 0;
}

queue的使用

队列是一种容器适配器,具有先进先出,只能从容器的一端插入元素,另一端提取元素
在这里插入图片描述

#include <iostream>
#include <list>
#include <queue>
using namespace std;int main()
{queue<int, list<int>> q;q.push(1);q.push(2);q.push(3);q.push(4);cout << q.size() << endl; //4while (!q.empty()){cout << q.front() << " ";q.pop();}cout << endl; //1 2 3 4return 0;
}

适配器

stack和queue在STL中并没有将其划分在容器的行列,而是称为容器适配器
因为stack和queue对其他容器的接口进行了包装,STL中stack和queue默认使用deque容器。在这里插入图片描述

queue的模拟实现

核心接口

front:获取对列头部(第一个元素)
back:获取队列尾部(最后一个元素)
size:获取队列中的元素个数
pop:删除队列头部元素
push:队列尾部插入元素
empty:判空

namespace cxq
{template<class T ,class Container = deque<T> >class queue{public:void push(const T & x){_con.push_back(x);}void pop(){_con.pop_front();}T&	front(){return _con.front();}T& back(){return _con.back();}size_t size(){return _con.size();}bool empty(){return _con.empty();}private:Container _con;};void test_queue1(){queue<int, list<int> > q ;q.push(1);q.push(2);q.push(3);q.push(4);while (!q.empty()){cout << q.front() << " ";q.pop();}cout << endl;}
}

stack的模拟实现

核心接口

top:获取尾部元素
size:获取栈中的元素个数
pop:删除栈顶元素
push:栈顶插入元素
empty:判空

namespace cxq
{template<class T  , class Container = deque<T> >class Stack{public:void push( const T & x ){_con.push_back(x);}T &  top(){return _con.back();}void pop(){_con.pop_back();}size_t size(){return _con.size();}bool empty(){return _con.empty();}private:Container _con;};void test_Stack1(){stack<int> st1;st1.push(1);st1.push(2);st1.push(3);st1.push(4);while (!st1.empty()){cout << st1.top() << " ";st1.pop();}cout << endl;stack<int ,list<int> > st2;st2.push(1);st2.push(2);st2.push(3);st2.push(4);while (!st2.empty()){cout << st2.top() << " ";st2.pop();}cout << endl;}
}

deque

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。

在这里插入图片描述

deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组。
双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落 在了deque的迭代器身上

在这里插入图片描述

deque 与vector比较:
deque的头插和头删时,不需要挪动元素,效率特别高,而且在扩容时,也不需要移动大量的元素。
deque与list比较:
其底层是连续空间,空间利用率比较高,不需要存储额外字段。

但是,deque不适合遍历
因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。

为什么STL选择deque作为stack和queue的底层默认容器

stack是一种后进先出的数据结构,因此只要具有push_back()和pop_back()操作的结构,都可以作为stack的底层容器,比如vector和list都可以。
queue是先进先出的数据结构,只要具有 push_back和pop_front操作的结构,都可以作为queue的底层容器,比如list。但是STL中对stack和 queue默认选择deque作为其底层容器,主要是因为:
1、stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
2、在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。
结合了deque的优点,而完美的避开了其缺陷。

如果想要对deque有比较深入的了解,可以阅读STL库的源码

// Deque implementation -*- C++ -*-// Copyright (C) 2001-2018 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>./*** Copyright (c) 1994* Hewlett-Packard Company** Permission to use, copy, modify, distribute and sell this software* and its documentation for any purpose is hereby granted without fee,* provided that the above copyright notice appear in all copies and* that both that copyright notice and this permission notice appear* in supporting documentation.  Hewlett-Packard Company makes no* representations about the suitability of this software for any* purpose.  It is provided "as is" without express or implied warranty.*** Copyright (c) 1997* Silicon Graphics Computer Systems, Inc.** Permission to use, copy, modify, distribute and sell this software* and its documentation for any purpose is hereby granted without fee,* provided that the above copyright notice appear in all copies and* that both that copyright notice and this permission notice appear* in supporting documentation.  Silicon Graphics makes no* representations about the suitability of this software for any* purpose.  It is provided "as is" without express or implied warranty.*//** @file bits/stl_deque.h*  This is an internal header file, included by other library headers.*  Do not attempt to use it directly. @headername{deque}*/#ifndef _STL_DEQUE_H
#define _STL_DEQUE_H 1#include <bits/concept_check.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_iterator_base_funcs.h>
#if __cplusplus >= 201103L
#include <initializer_list>
#endif#include <debug/assertions.h>namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER/***  @brief This function controls the size of memory nodes.*  @param  __size  The size of an element.*  @return   The number (not byte size) of elements per node.**  This function started off as a compiler kludge from SGI, but*  seems to be a useful wrapper around a repeated constant*  expression.  The @b 512 is tunable (and no other code needs to*  change), but no investigation has been done since inheriting the*  SGI code.  Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what*  you are doing, however: changing it breaks the binary*  compatibility!!*/#ifndef _GLIBCXX_DEQUE_BUF_SIZE
#define _GLIBCXX_DEQUE_BUF_SIZE 512
#endif_GLIBCXX_CONSTEXPR inline size_t__deque_buf_size(size_t __size){ return (__size < _GLIBCXX_DEQUE_BUF_SIZE? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }/***  @brief A deque::iterator.**  Quite a bit of intelligence here.  Much of the functionality of*  deque is actually passed off to this class.  A deque holds two*  of these internally, marking its valid range.  Access to*  elements is done as offsets of either of those two, relying on*  operator overloading in this class.**  All the functions are op overloads except for _M_set_node.*/template<typename _Tp, typename _Ref, typename _Ptr>struct _Deque_iterator{
#if __cplusplus < 201103Ltypedef _Deque_iterator<_Tp, _Tp&, _Tp*>	     iterator;typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;typedef _Tp*					 _Elt_pointer;typedef _Tp**					_Map_pointer;
#elseprivate:template<typename _Up>using __ptr_to = typename pointer_traits<_Ptr>::template rebind<_Up>;template<typename _CvTp>using __iter = _Deque_iterator<_Tp, _CvTp&, __ptr_to<_CvTp>>;public:typedef __iter<_Tp>		iterator;typedef __iter<const _Tp>		const_iterator;typedef __ptr_to<_Tp>		_Elt_pointer;typedef __ptr_to<_Elt_pointer>	_Map_pointer;
#endifstatic size_t _S_buffer_size() _GLIBCXX_NOEXCEPT{ return __deque_buf_size(sizeof(_Tp)); }typedef std::random_access_iterator_tag	iterator_category;typedef _Tp				value_type;typedef _Ptr				pointer;typedef _Ref				reference;typedef size_t				size_type;typedef ptrdiff_t				difference_type;typedef _Deque_iterator			_Self;_Elt_pointer _M_cur;_Elt_pointer _M_first;_Elt_pointer _M_last;_Map_pointer _M_node;_Deque_iterator(_Elt_pointer __x, _Map_pointer __y) _GLIBCXX_NOEXCEPT: _M_cur(__x), _M_first(*__y),_M_last(*__y + _S_buffer_size()), _M_node(__y) { }_Deque_iterator() _GLIBCXX_NOEXCEPT: _M_cur(), _M_first(), _M_last(), _M_node() { }_Deque_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT: _M_cur(__x._M_cur), _M_first(__x._M_first),_M_last(__x._M_last), _M_node(__x._M_node) { }iterator_M_const_cast() const _GLIBCXX_NOEXCEPT{ return iterator(_M_cur, _M_node); }referenceoperator*() const _GLIBCXX_NOEXCEPT{ return *_M_cur; }pointeroperator->() const _GLIBCXX_NOEXCEPT{ return _M_cur; }_Self&operator++() _GLIBCXX_NOEXCEPT{++_M_cur;if (_M_cur == _M_last){_M_set_node(_M_node + 1);_M_cur = _M_first;}return *this;}_Selfoperator++(int) _GLIBCXX_NOEXCEPT{_Self __tmp = *this;++*this;return __tmp;}_Self&operator--() _GLIBCXX_NOEXCEPT{if (_M_cur == _M_first){_M_set_node(_M_node - 1);_M_cur = _M_last;}--_M_cur;return *this;}_Selfoperator--(int) _GLIBCXX_NOEXCEPT{_Self __tmp = *this;--*this;return __tmp;}_Self&operator+=(difference_type __n) _GLIBCXX_NOEXCEPT{const difference_type __offset = __n + (_M_cur - _M_first);if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))_M_cur += __n;else{const difference_type __node_offset =__offset > 0 ? __offset / difference_type(_S_buffer_size()): -difference_type((-__offset - 1)/ _S_buffer_size()) - 1;_M_set_node(_M_node + __node_offset);_M_cur = _M_first + (__offset - __node_offset* difference_type(_S_buffer_size()));}return *this;}_Selfoperator+(difference_type __n) const _GLIBCXX_NOEXCEPT{_Self __tmp = *this;return __tmp += __n;}_Self&operator-=(difference_type __n) _GLIBCXX_NOEXCEPT{ return *this += -__n; }_Selfoperator-(difference_type __n) const _GLIBCXX_NOEXCEPT{_Self __tmp = *this;return __tmp -= __n;}referenceoperator[](difference_type __n) const _GLIBCXX_NOEXCEPT{ return *(*this + __n); }/***  Prepares to traverse new_node.  Sets everything except*  _M_cur, which should therefore be set by the caller*  immediately afterwards, based on _M_first and _M_last.*/void_M_set_node(_Map_pointer __new_node) _GLIBCXX_NOEXCEPT{_M_node = __new_node;_M_first = *__new_node;_M_last = _M_first + difference_type(_S_buffer_size());}};// Note: we also provide overloads whose operands are of the same type in// order to avoid ambiguous overload resolution when std::rel_ops operators// are in scope (for additional details, see libstdc++/3628)template<typename _Tp, typename _Ref, typename _Ptr>inline booloperator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT{ return __x._M_cur == __y._M_cur; }template<typename _Tp, typename _RefL, typename _PtrL,typename _RefR, typename _PtrR>inline booloperator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT{ return __x._M_cur == __y._M_cur; }template<typename _Tp, typename _Ref, typename _Ptr>inline booloperator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT{ return !(__x == __y); }template<typename _Tp, typename _RefL, typename _PtrL,typename _RefR, typename _PtrR>inline booloperator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT{ return !(__x == __y); }template<typename _Tp, typename _Ref, typename _Ptr>inline booloperator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT{ return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur): (__x._M_node < __y._M_node); }template<typename _Tp, typename _RefL, typename _PtrL,typename _RefR, typename _PtrR>inline booloperator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT{ return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur): (__x._M_node < __y._M_node); }template<typename _Tp, typename _Ref, typename _Ptr>inline booloperator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT{ return __y < __x; }template<typename _Tp, typename _RefL, typename _PtrL,typename _RefR, typename _PtrR>inline booloperator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT{ return __y < __x; }template<typename _Tp, typename _Ref, typename _Ptr>inline booloperator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT{ return !(__y < __x); }template<typename _Tp, typename _RefL, typename _PtrL,typename _RefR, typename _PtrR>inline booloperator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT{ return !(__y < __x); }template<typename _Tp, typename _Ref, typename _Ptr>inline booloperator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT{ return !(__x < __y); }template<typename _Tp, typename _RefL, typename _PtrL,typename _RefR, typename _PtrR>inline booloperator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT{ return !(__x < __y); }// _GLIBCXX_RESOLVE_LIB_DEFECTS// According to the resolution of DR179 not only the various comparison// operators but also operator- must accept mixed iterator/const_iterator// parameters.template<typename _Tp, typename _Ref, typename _Ptr>inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_typeoperator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT{return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type(_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)+ (__y._M_last - __y._M_cur);}template<typename _Tp, typename _RefL, typename _PtrL,typename _RefR, typename _PtrR>inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_typeoperator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT{return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type(_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)+ (__y._M_last - __y._M_cur);}template<typename _Tp, typename _Ref, typename _Ptr>inline _Deque_iterator<_Tp, _Ref, _Ptr>operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)_GLIBCXX_NOEXCEPT{ return __x + __n; }template<typename _Tp>voidfill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);template<typename _Tp>_Deque_iterator<_Tp, _Tp&, _Tp*>copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,_Deque_iterator<_Tp, const _Tp&, const _Tp*>,_Deque_iterator<_Tp, _Tp&, _Tp*>);template<typename _Tp>inline _Deque_iterator<_Tp, _Tp&, _Tp*>copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,_Deque_iterator<_Tp, _Tp&, _Tp*> __last,_Deque_iterator<_Tp, _Tp&, _Tp*> __result){ return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),__result); }template<typename _Tp>_Deque_iterator<_Tp, _Tp&, _Tp*>copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,_Deque_iterator<_Tp, const _Tp&, const _Tp*>,_Deque_iterator<_Tp, _Tp&, _Tp*>);template<typename _Tp>inline _Deque_iterator<_Tp, _Tp&, _Tp*>copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,_Deque_iterator<_Tp, _Tp&, _Tp*> __last,_Deque_iterator<_Tp, _Tp&, _Tp*> __result){ return std::copy_backward(_Deque_iterator<_Tp,const _Tp&, const _Tp*>(__first),_Deque_iterator<_Tp,const _Tp&, const _Tp*>(__last),__result); }#if __cplusplus >= 201103Ltemplate<typename _Tp>_Deque_iterator<_Tp, _Tp&, _Tp*>move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,_Deque_iterator<_Tp, const _Tp&, const _Tp*>,_Deque_iterator<_Tp, _Tp&, _Tp*>);template<typename _Tp>inline _Deque_iterator<_Tp, _Tp&, _Tp*>move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,_Deque_iterator<_Tp, _Tp&, _Tp*> __last,_Deque_iterator<_Tp, _Tp&, _Tp*> __result){ return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),__result); }template<typename _Tp>_Deque_iterator<_Tp, _Tp&, _Tp*>move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,_Deque_iterator<_Tp, const _Tp&, const _Tp*>,_Deque_iterator<_Tp, _Tp&, _Tp*>);template<typename _Tp>inline _Deque_iterator<_Tp, _Tp&, _Tp*>move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,_Deque_iterator<_Tp, _Tp&, _Tp*> __last,_Deque_iterator<_Tp, _Tp&, _Tp*> __result){ return std::move_backward(_Deque_iterator<_Tp,const _Tp&, const _Tp*>(__first),_Deque_iterator<_Tp,const _Tp&, const _Tp*>(__last),__result); }
#endif/***  Deque base class.  This class provides the unified face for %deque's*  allocation.  This class's constructor and destructor allocate and*  deallocate (but do not initialize) storage.  This makes %exception*  safety easier.**  Nothing in this class ever constructs or destroys an actual Tp element.*  (Deque handles that itself.)  Only/All memory management is performed*  here.*/template<typename _Tp, typename _Alloc>class _Deque_base{protected:typedef typename __gnu_cxx::__alloc_traits<_Alloc>::templaterebind<_Tp>::other _Tp_alloc_type;typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>	 _Alloc_traits;#if __cplusplus < 201103Ltypedef _Tp*					_Ptr;typedef const _Tp*				_Ptr_const;
#elsetypedef typename _Alloc_traits::pointer		_Ptr;typedef typename _Alloc_traits::const_pointer	_Ptr_const;
#endiftypedef typename _Alloc_traits::template rebind<_Ptr>::other_Map_alloc_type;typedef __gnu_cxx::__alloc_traits<_Map_alloc_type> _Map_alloc_traits;public:typedef _Alloc		  allocator_type;typedef typename _Alloc_traits::size_type size_type;allocator_typeget_allocator() const _GLIBCXX_NOEXCEPT{ return allocator_type(_M_get_Tp_allocator()); }typedef _Deque_iterator<_Tp, _Tp&, _Ptr>	  iterator;typedef _Deque_iterator<_Tp, const _Tp&, _Ptr_const>   const_iterator;_Deque_base(): _M_impl(){ _M_initialize_map(0); }_Deque_base(size_t __num_elements): _M_impl(){ _M_initialize_map(__num_elements); }_Deque_base(const allocator_type& __a, size_t __num_elements): _M_impl(__a){ _M_initialize_map(__num_elements); }_Deque_base(const allocator_type& __a): _M_impl(__a){ /* Caller must initialize map. */ }#if __cplusplus >= 201103L_Deque_base(_Deque_base&& __x, false_type): _M_impl(__x._M_move_impl()){ }_Deque_base(_Deque_base&& __x, true_type): _M_impl(std::move(__x._M_get_Tp_allocator())){_M_initialize_map(0);if (__x._M_impl._M_map)this->_M_impl._M_swap_data(__x._M_impl);}_Deque_base(_Deque_base&& __x): _Deque_base(std::move(__x), typename _Alloc_traits::is_always_equal{}){ }_Deque_base(_Deque_base&& __x, const allocator_type& __a, size_type __n): _M_impl(__a){if (__x.get_allocator() == __a){if (__x._M_impl._M_map){_M_initialize_map(0);this->_M_impl._M_swap_data(__x._M_impl);}}else{_M_initialize_map(__n);}}
#endif~_Deque_base() _GLIBCXX_NOEXCEPT;protected:typedef typename iterator::_Map_pointer _Map_pointer;//This struct encapsulates the implementation of the std::deque//standard container and at the same time makes use of the EBO//for empty allocators.struct _Deque_impl: public _Tp_alloc_type{_Map_pointer _M_map;size_t _M_map_size;iterator _M_start;iterator _M_finish;_Deque_impl(): _Tp_alloc_type(), _M_map(), _M_map_size(0),_M_start(), _M_finish(){ }_Deque_impl(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT: _Tp_alloc_type(__a), _M_map(), _M_map_size(0),_M_start(), _M_finish(){ }#if __cplusplus >= 201103L_Deque_impl(_Deque_impl&&) = default;_Deque_impl(_Tp_alloc_type&& __a) noexcept: _Tp_alloc_type(std::move(__a)), _M_map(), _M_map_size(0),_M_start(), _M_finish(){ }
#endifvoid _M_swap_data(_Deque_impl& __x) _GLIBCXX_NOEXCEPT{using std::swap;swap(this->_M_start, __x._M_start);swap(this->_M_finish, __x._M_finish);swap(this->_M_map, __x._M_map);swap(this->_M_map_size, __x._M_map_size);}};_Tp_alloc_type&_M_get_Tp_allocator() _GLIBCXX_NOEXCEPT{ return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }const _Tp_alloc_type&_M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT{ return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }_Map_alloc_type_M_get_map_allocator() const _GLIBCXX_NOEXCEPT{ return _Map_alloc_type(_M_get_Tp_allocator()); }_Ptr_M_allocate_node(){typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits;return _Traits::allocate(_M_impl, __deque_buf_size(sizeof(_Tp)));}void_M_deallocate_node(_Ptr __p) _GLIBCXX_NOEXCEPT{typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits;_Traits::deallocate(_M_impl, __p, __deque_buf_size(sizeof(_Tp)));}_Map_pointer_M_allocate_map(size_t __n){_Map_alloc_type __map_alloc = _M_get_map_allocator();return _Map_alloc_traits::allocate(__map_alloc, __n);}void_M_deallocate_map(_Map_pointer __p, size_t __n) _GLIBCXX_NOEXCEPT{_Map_alloc_type __map_alloc = _M_get_map_allocator();_Map_alloc_traits::deallocate(__map_alloc, __p, __n);}protected:void _M_initialize_map(size_t);void _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish);void _M_destroy_nodes(_Map_pointer __nstart,_Map_pointer __nfinish) _GLIBCXX_NOEXCEPT;enum { _S_initial_map_size = 8 };_Deque_impl _M_impl;#if __cplusplus >= 201103Lprivate:_Deque_impl_M_move_impl(){if (!_M_impl._M_map)return std::move(_M_impl);// Create a copy of the current allocator._Tp_alloc_type __alloc{_M_get_Tp_allocator()};// Put that copy in a moved-from state._Tp_alloc_type __sink __attribute((__unused__)) {std::move(__alloc)};// Create an empty map that allocates using the moved-from allocator._Deque_base __empty{__alloc};__empty._M_initialize_map(0);// Now safe to modify current allocator and perform non-throwing swaps._Deque_impl __ret{std::move(_M_get_Tp_allocator())};_M_impl._M_swap_data(__ret);_M_impl._M_swap_data(__empty._M_impl);return __ret;}
#endif};template<typename _Tp, typename _Alloc>_Deque_base<_Tp, _Alloc>::~_Deque_base() _GLIBCXX_NOEXCEPT{if (this->_M_impl._M_map){_M_destroy_nodes(this->_M_impl._M_start._M_node,this->_M_impl._M_finish._M_node + 1);_M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);}}/***  @brief Layout storage.*  @param  __num_elements  The count of T's for which to allocate space*                          at first.*  @return   Nothing.**  The initial underlying memory layout is a bit complicated...*/template<typename _Tp, typename _Alloc>void_Deque_base<_Tp, _Alloc>::_M_initialize_map(size_t __num_elements){const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))+ 1);this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,size_t(__num_nodes + 2));this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);// For "small" maps (needing less than _M_map_size nodes), allocation// starts in the middle elements and grows outwards.  So nstart may be// the beginning of _M_map, but for small maps it may be as far in as// _M_map+3._Map_pointer __nstart = (this->_M_impl._M_map+ (this->_M_impl._M_map_size - __num_nodes) / 2);_Map_pointer __nfinish = __nstart + __num_nodes;__try{ _M_create_nodes(__nstart, __nfinish); }__catch(...){_M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);this->_M_impl._M_map = _Map_pointer();this->_M_impl._M_map_size = 0;__throw_exception_again;}this->_M_impl._M_start._M_set_node(__nstart);this->_M_impl._M_finish._M_set_node(__nfinish - 1);this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first+ __num_elements% __deque_buf_size(sizeof(_Tp)));}template<typename _Tp, typename _Alloc>void_Deque_base<_Tp, _Alloc>::_M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish){_Map_pointer __cur;__try{for (__cur = __nstart; __cur < __nfinish; ++__cur)*__cur = this->_M_allocate_node();}__catch(...){_M_destroy_nodes(__nstart, __cur);__throw_exception_again;}}template<typename _Tp, typename _Alloc>void_Deque_base<_Tp, _Alloc>::_M_destroy_nodes(_Map_pointer __nstart,_Map_pointer __nfinish) _GLIBCXX_NOEXCEPT{for (_Map_pointer __n = __nstart; __n < __nfinish; ++__n)_M_deallocate_node(*__n);}/***  @brief  A standard container using fixed-size memory allocation and*  constant-time manipulation of elements at either end.**  @ingroup sequences**  @tparam _Tp  Type of element.*  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.**  Meets the requirements of a <a href="tables.html#65">container</a>, a*  <a href="tables.html#66">reversible container</a>, and a*  <a href="tables.html#67">sequence</a>, including the*  <a href="tables.html#68">optional sequence requirements</a>.**  In previous HP/SGI versions of deque, there was an extra template*  parameter so users could control the node size.  This extension turned*  out to violate the C++ standard (it can be detected using template*  template parameters), and it was removed.**  Here's how a deque<Tp> manages memory.  Each deque has 4 members:**  - Tp**        _M_map*  - size_t      _M_map_size*  - iterator    _M_start, _M_finish**  map_size is at least 8.  %map is an array of map_size*  pointers-to-@a nodes.  (The name %map has nothing to do with the*  std::map class, and @b nodes should not be confused with*  std::list's usage of @a node.)**  A @a node has no specific type name as such, but it is referred*  to as @a node in this file.  It is a simple array-of-Tp.  If Tp*  is very large, there will be one Tp element per node (i.e., an*  @a array of one).  For non-huge Tp's, node size is inversely*  related to Tp size: the larger the Tp, the fewer Tp's will fit*  in a node.  The goal here is to keep the total size of a node*  relatively small and constant over different Tp's, to improve*  allocator efficiency.**  Not every pointer in the %map array will point to a node.  If*  the initial number of elements in the deque is small, the*  /middle/ %map pointers will be valid, and the ones at the edges*  will be unused.  This same situation will arise as the %map*  grows: available %map pointers, if any, will be on the ends.  As*  new nodes are created, only a subset of the %map's pointers need*  to be copied @a outward.**  Class invariants:* - For any nonsingular iterator i:*    - i.node points to a member of the %map array.  (Yes, you read that*      correctly:  i.node does not actually point to a node.)  The member of*      the %map array is what actually points to the node.*    - i.first == *(i.node)    (This points to the node (first Tp element).)*    - i.last  == i.first + node_size*    - i.cur is a pointer in the range [i.first, i.last).  NOTE:*      the implication of this is that i.cur is always a dereferenceable*      pointer, even if i is a past-the-end iterator.* - Start and Finish are always nonsingular iterators.  NOTE: this* means that an empty deque must have one node, a deque with <N* elements (where N is the node buffer size) must have one node, a* deque with N through (2N-1) elements must have two nodes, etc.* - For every node other than start.node and finish.node, every* element in the node is an initialized object.  If start.node ==* finish.node, then [start.cur, finish.cur) are initialized* objects, and the elements outside that range are uninitialized* storage.  Otherwise, [start.cur, start.last) and [finish.first,* finish.cur) are initialized objects, and [start.first, start.cur)* and [finish.cur, finish.last) are uninitialized storage.* - [%map, %map + map_size) is a valid, non-empty range.* - [start.node, finish.node] is a valid range contained within*   [%map, %map + map_size).* - A pointer in the range [%map, %map + map_size) points to an allocated*   node if and only if the pointer is in the range*   [start.node, finish.node].**  Here's the magic:  nothing in deque is @b aware of the discontiguous*  storage!**  The memory setup and layout occurs in the parent, _Base, and the iterator*  class is entirely responsible for @a leaping from one node to the next.*  All the implementation routines for deque itself work only through the*  start and finish iterators.  This keeps the routines simple and sane,*  and we can use other standard algorithms as well.*/template<typename _Tp, typename _Alloc = std::allocator<_Tp> >class deque : protected _Deque_base<_Tp, _Alloc>{
#ifdef _GLIBCXX_CONCEPT_CHECKS// concept requirementstypedef typename _Alloc::value_type	_Alloc_value_type;
# if __cplusplus < 201103L__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
# endif__glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
#endif#if __cplusplus >= 201103Lstatic_assert(is_same<typename remove_cv<_Tp>::type, _Tp>::value,"std::deque must have a non-const, non-volatile value_type");
# ifdef __STRICT_ANSI__static_assert(is_same<typename _Alloc::value_type, _Tp>::value,"std::deque must have the same value_type as its allocator");
# endif
#endiftypedef _Deque_base<_Tp, _Alloc>			_Base;typedef typename _Base::_Tp_alloc_type		_Tp_alloc_type;typedef typename _Base::_Alloc_traits		_Alloc_traits;typedef typename _Base::_Map_pointer		_Map_pointer;public:typedef _Tp					value_type;typedef typename _Alloc_traits::pointer		pointer;typedef typename _Alloc_traits::const_pointer	const_pointer;typedef typename _Alloc_traits::reference		reference;typedef typename _Alloc_traits::const_reference	const_reference;typedef typename _Base::iterator			iterator;typedef typename _Base::const_iterator		const_iterator;typedef std::reverse_iterator<const_iterator>	const_reverse_iterator;typedef std::reverse_iterator<iterator>		reverse_iterator;typedef size_t					size_type;typedef ptrdiff_t					difference_type;typedef _Alloc					allocator_type;protected:static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT{ return __deque_buf_size(sizeof(_Tp)); }// Functions controlling memory layout, and nothing else.using _Base::_M_initialize_map;using _Base::_M_create_nodes;using _Base::_M_destroy_nodes;using _Base::_M_allocate_node;using _Base::_M_deallocate_node;using _Base::_M_allocate_map;using _Base::_M_deallocate_map;using _Base::_M_get_Tp_allocator;/***  A total of four data members accumulated down the hierarchy.*  May be accessed via _M_impl.**/using _Base::_M_impl;public:// [23.2.1.1] construct/copy/destroy// (assign() and get_allocator() are also listed in this section)/***  @brief  Creates a %deque with no elements.*/deque() : _Base() { }/***  @brief  Creates a %deque with no elements.*  @param  __a  An allocator object.*/explicitdeque(const allocator_type& __a): _Base(__a, 0) { }#if __cplusplus >= 201103L/***  @brief  Creates a %deque with default constructed elements.*  @param  __n  The number of elements to initially create.*  @param  __a  An allocator.**  This constructor fills the %deque with @a n default*  constructed elements.*/explicitdeque(size_type __n, const allocator_type& __a = allocator_type()): _Base(__a, __n){ _M_default_initialize(); }/***  @brief  Creates a %deque with copies of an exemplar element.*  @param  __n  The number of elements to initially create.*  @param  __value  An element to copy.*  @param  __a  An allocator.**  This constructor fills the %deque with @a __n copies of @a __value.*/deque(size_type __n, const value_type& __value,const allocator_type& __a = allocator_type()): _Base(__a, __n){ _M_fill_initialize(__value); }
#else/***  @brief  Creates a %deque with copies of an exemplar element.*  @param  __n  The number of elements to initially create.*  @param  __value  An element to copy.*  @param  __a  An allocator.**  This constructor fills the %deque with @a __n copies of @a __value.*/explicitdeque(size_type __n, const value_type& __value = value_type(),const allocator_type& __a = allocator_type()): _Base(__a, __n){ _M_fill_initialize(__value); }
#endif/***  @brief  %Deque copy constructor.*  @param  __x  A %deque of identical element and allocator types.**  The newly-created %deque uses a copy of the allocator object used*  by @a __x (unless the allocator traits dictate a different object).*/deque(const deque& __x): _Base(_Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()),__x.size()){ std::__uninitialized_copy_a(__x.begin(), __x.end(),this->_M_impl._M_start,_M_get_Tp_allocator()); }#if __cplusplus >= 201103L/***  @brief  %Deque move constructor.*  @param  __x  A %deque of identical element and allocator types.**  The newly-created %deque contains the exact contents of @a __x.*  The contents of @a __x are a valid, but unspecified %deque.*/deque(deque&& __x): _Base(std::move(__x)) { }/// Copy constructor with alternative allocatordeque(const deque& __x, const allocator_type& __a): _Base(__a, __x.size()){ std::__uninitialized_copy_a(__x.begin(), __x.end(),this->_M_impl._M_start,_M_get_Tp_allocator()); }/// Move constructor with alternative allocatordeque(deque&& __x, const allocator_type& __a): _Base(std::move(__x), __a, __x.size()){if (__x.get_allocator() != __a){std::__uninitialized_move_a(__x.begin(), __x.end(),this->_M_impl._M_start,_M_get_Tp_allocator());__x.clear();}}/***  @brief  Builds a %deque from an initializer list.*  @param  __l  An initializer_list.*  @param  __a  An allocator object.**  Create a %deque consisting of copies of the elements in the*  initializer_list @a __l.**  This will call the element type's copy constructor N times*  (where N is __l.size()) and do no memory reallocation.*/deque(initializer_list<value_type> __l,const allocator_type& __a = allocator_type()): _Base(__a){_M_range_initialize(__l.begin(), __l.end(),random_access_iterator_tag());}
#endif/***  @brief  Builds a %deque from a range.*  @param  __first  An input iterator.*  @param  __last  An input iterator.*  @param  __a  An allocator object.**  Create a %deque consisting of copies of the elements from [__first,*  __last).**  If the iterators are forward, bidirectional, or random-access, then*  this will call the elements' copy constructor N times (where N is*  distance(__first,__last)) and do no memory reallocation.  But if only*  input iterators are used, then this will do at most 2N calls to the*  copy constructor, and logN memory reallocations.*/
#if __cplusplus >= 201103Ltemplate<typename _InputIterator,typename = std::_RequireInputIter<_InputIterator>>deque(_InputIterator __first, _InputIterator __last,const allocator_type& __a = allocator_type()): _Base(__a){ _M_initialize_dispatch(__first, __last, __false_type()); }
#elsetemplate<typename _InputIterator>deque(_InputIterator __first, _InputIterator __last,const allocator_type& __a = allocator_type()): _Base(__a){// Check whether it's an integral type.  If so, it's not an iterator.typedef typename std::__is_integer<_InputIterator>::__type _Integral;_M_initialize_dispatch(__first, __last, _Integral());}
#endif/***  The dtor only erases the elements, and note that if the elements*  themselves are pointers, the pointed-to memory is not touched in any*  way.  Managing the pointer is the user's responsibility.*/~deque(){ _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }/***  @brief  %Deque assignment operator.*  @param  __x  A %deque of identical element and allocator types.**  All the elements of @a x are copied.**  The newly-created %deque uses a copy of the allocator object used*  by @a __x (unless the allocator traits dictate a different object).*/deque&operator=(const deque& __x);#if __cplusplus >= 201103L/***  @brief  %Deque move assignment operator.*  @param  __x  A %deque of identical element and allocator types.**  The contents of @a __x are moved into this deque (without copying,*  if the allocators permit it).*  @a __x is a valid, but unspecified %deque.*/deque&operator=(deque&& __x) noexcept(_Alloc_traits::_S_always_equal()){using __always_equal = typename _Alloc_traits::is_always_equal;_M_move_assign1(std::move(__x), __always_equal{});return *this;}/***  @brief  Assigns an initializer list to a %deque.*  @param  __l  An initializer_list.**  This function fills a %deque with copies of the elements in the*  initializer_list @a __l.**  Note that the assignment completely changes the %deque and that the*  resulting %deque's size is the same as the number of elements*  assigned.*/deque&operator=(initializer_list<value_type> __l){_M_assign_aux(__l.begin(), __l.end(),random_access_iterator_tag());return *this;}
#endif/***  @brief  Assigns a given value to a %deque.*  @param  __n  Number of elements to be assigned.*  @param  __val  Value to be assigned.**  This function fills a %deque with @a n copies of the given*  value.  Note that the assignment completely changes the*  %deque and that the resulting %deque's size is the same as*  the number of elements assigned.*/voidassign(size_type __n, const value_type& __val){ _M_fill_assign(__n, __val); }/***  @brief  Assigns a range to a %deque.*  @param  __first  An input iterator.*  @param  __last   An input iterator.**  This function fills a %deque with copies of the elements in the*  range [__first,__last).**  Note that the assignment completely changes the %deque and that the*  resulting %deque's size is the same as the number of elements*  assigned.*/
#if __cplusplus >= 201103Ltemplate<typename _InputIterator,typename = std::_RequireInputIter<_InputIterator>>voidassign(_InputIterator __first, _InputIterator __last){ _M_assign_dispatch(__first, __last, __false_type()); }
#elsetemplate<typename _InputIterator>voidassign(_InputIterator __first, _InputIterator __last){typedef typename std::__is_integer<_InputIterator>::__type _Integral;_M_assign_dispatch(__first, __last, _Integral());}
#endif#if __cplusplus >= 201103L/***  @brief  Assigns an initializer list to a %deque.*  @param  __l  An initializer_list.**  This function fills a %deque with copies of the elements in the*  initializer_list @a __l.**  Note that the assignment completely changes the %deque and that the*  resulting %deque's size is the same as the number of elements*  assigned.*/voidassign(initializer_list<value_type> __l){ _M_assign_aux(__l.begin(), __l.end(), random_access_iterator_tag()); }
#endif/// Get a copy of the memory allocation object.allocator_typeget_allocator() const _GLIBCXX_NOEXCEPT{ return _Base::get_allocator(); }// iterators/***  Returns a read/write iterator that points to the first element in the*  %deque.  Iteration is done in ordinary element order.*/iteratorbegin() _GLIBCXX_NOEXCEPT{ return this->_M_impl._M_start; }/***  Returns a read-only (constant) iterator that points to the first*  element in the %deque.  Iteration is done in ordinary element order.*/const_iteratorbegin() const _GLIBCXX_NOEXCEPT{ return this->_M_impl._M_start; }/***  Returns a read/write iterator that points one past the last*  element in the %deque.  Iteration is done in ordinary*  element order.*/iteratorend() _GLIBCXX_NOEXCEPT{ return this->_M_impl._M_finish; }/***  Returns a read-only (constant) iterator that points one past*  the last element in the %deque.  Iteration is done in*  ordinary element order.*/const_iteratorend() const _GLIBCXX_NOEXCEPT{ return this->_M_impl._M_finish; }/***  Returns a read/write reverse iterator that points to the*  last element in the %deque.  Iteration is done in reverse*  element order.*/reverse_iteratorrbegin() _GLIBCXX_NOEXCEPT{ return reverse_iterator(this->_M_impl._M_finish); }/***  Returns a read-only (constant) reverse iterator that points*  to the last element in the %deque.  Iteration is done in*  reverse element order.*/const_reverse_iteratorrbegin() const _GLIBCXX_NOEXCEPT{ return const_reverse_iterator(this->_M_impl._M_finish); }/***  Returns a read/write reverse iterator that points to one*  before the first element in the %deque.  Iteration is done*  in reverse element order.*/reverse_iteratorrend() _GLIBCXX_NOEXCEPT{ return reverse_iterator(this->_M_impl._M_start); }/***  Returns a read-only (constant) reverse iterator that points*  to one before the first element in the %deque.  Iteration is*  done in reverse element order.*/const_reverse_iteratorrend() const _GLIBCXX_NOEXCEPT{ return const_reverse_iterator(this->_M_impl._M_start); }#if __cplusplus >= 201103L/***  Returns a read-only (constant) iterator that points to the first*  element in the %deque.  Iteration is done in ordinary element order.*/const_iteratorcbegin() const noexcept{ return this->_M_impl._M_start; }/***  Returns a read-only (constant) iterator that points one past*  the last element in the %deque.  Iteration is done in*  ordinary element order.*/const_iteratorcend() const noexcept{ return this->_M_impl._M_finish; }/***  Returns a read-only (constant) reverse iterator that points*  to the last element in the %deque.  Iteration is done in*  reverse element order.*/const_reverse_iteratorcrbegin() const noexcept{ return const_reverse_iterator(this->_M_impl._M_finish); }/***  Returns a read-only (constant) reverse iterator that points*  to one before the first element in the %deque.  Iteration is*  done in reverse element order.*/const_reverse_iteratorcrend() const noexcept{ return const_reverse_iterator(this->_M_impl._M_start); }
#endif// [23.2.1.2] capacity/**  Returns the number of elements in the %deque.  */size_typesize() const _GLIBCXX_NOEXCEPT{ return this->_M_impl._M_finish - this->_M_impl._M_start; }/**  Returns the size() of the largest possible %deque.  */size_typemax_size() const _GLIBCXX_NOEXCEPT{ return _Alloc_traits::max_size(_M_get_Tp_allocator()); }#if __cplusplus >= 201103L/***  @brief  Resizes the %deque to the specified number of elements.*  @param  __new_size  Number of elements the %deque should contain.**  This function will %resize the %deque to the specified*  number of elements.  If the number is smaller than the*  %deque's current size the %deque is truncated, otherwise*  default constructed elements are appended.*/voidresize(size_type __new_size){const size_type __len = size();if (__new_size > __len)_M_default_append(__new_size - __len);else if (__new_size < __len)_M_erase_at_end(this->_M_impl._M_start+ difference_type(__new_size));}/***  @brief  Resizes the %deque to the specified number of elements.*  @param  __new_size  Number of elements the %deque should contain.*  @param  __x  Data with which new elements should be populated.**  This function will %resize the %deque to the specified*  number of elements.  If the number is smaller than the*  %deque's current size the %deque is truncated, otherwise the*  %deque is extended and new elements are populated with given*  data.*/voidresize(size_type __new_size, const value_type& __x){const size_type __len = size();if (__new_size > __len)_M_fill_insert(this->_M_impl._M_finish, __new_size - __len, __x);else if (__new_size < __len)_M_erase_at_end(this->_M_impl._M_start+ difference_type(__new_size));}
#else/***  @brief  Resizes the %deque to the specified number of elements.*  @param  __new_size  Number of elements the %deque should contain.*  @param  __x  Data with which new elements should be populated.**  This function will %resize the %deque to the specified*  number of elements.  If the number is smaller than the*  %deque's current size the %deque is truncated, otherwise the*  %deque is extended and new elements are populated with given*  data.*/voidresize(size_type __new_size, value_type __x = value_type()){const size_type __len = size();if (__new_size > __len)_M_fill_insert(this->_M_impl._M_finish, __new_size - __len, __x);else if (__new_size < __len)_M_erase_at_end(this->_M_impl._M_start+ difference_type(__new_size));}
#endif#if __cplusplus >= 201103L/**  A non-binding request to reduce memory use.  */voidshrink_to_fit() noexcept{ _M_shrink_to_fit(); }
#endif/***  Returns true if the %deque is empty.  (Thus begin() would*  equal end().)*/boolempty() const _GLIBCXX_NOEXCEPT{ return this->_M_impl._M_finish == this->_M_impl._M_start; }// element access/***  @brief Subscript access to the data contained in the %deque.*  @param __n The index of the element for which data should be*  accessed.*  @return  Read/write reference to data.**  This operator allows for easy, array-style, data access.*  Note that data access with this operator is unchecked and*  out_of_range lookups are not defined. (For checked lookups*  see at().)*/referenceoperator[](size_type __n) _GLIBCXX_NOEXCEPT{__glibcxx_requires_subscript(__n);return this->_M_impl._M_start[difference_type(__n)];}/***  @brief Subscript access to the data contained in the %deque.*  @param __n The index of the element for which data should be*  accessed.*  @return  Read-only (constant) reference to data.**  This operator allows for easy, array-style, data access.*  Note that data access with this operator is unchecked and*  out_of_range lookups are not defined. (For checked lookups*  see at().)*/const_referenceoperator[](size_type __n) const _GLIBCXX_NOEXCEPT{__glibcxx_requires_subscript(__n);return this->_M_impl._M_start[difference_type(__n)];}protected:/// Safety check used only from at().void_M_range_check(size_type __n) const{if (__n >= this->size())__throw_out_of_range_fmt(__N("deque::_M_range_check: __n ""(which is %zu)>= this->size() ""(which is %zu)"),__n, this->size());}public:/***  @brief  Provides access to the data contained in the %deque.*  @param __n The index of the element for which data should be*  accessed.*  @return  Read/write reference to data.*  @throw  std::out_of_range  If @a __n is an invalid index.**  This function provides for safer data access.  The parameter*  is first checked that it is in the range of the deque.  The*  function throws out_of_range if the check fails.*/referenceat(size_type __n){_M_range_check(__n);return (*this)[__n];}/***  @brief  Provides access to the data contained in the %deque.*  @param __n The index of the element for which data should be*  accessed.*  @return  Read-only (constant) reference to data.*  @throw  std::out_of_range  If @a __n is an invalid index.**  This function provides for safer data access.  The parameter is first*  checked that it is in the range of the deque.  The function throws*  out_of_range if the check fails.*/const_referenceat(size_type __n) const{_M_range_check(__n);return (*this)[__n];}/***  Returns a read/write reference to the data at the first*  element of the %deque.*/referencefront() _GLIBCXX_NOEXCEPT{__glibcxx_requires_nonempty();return *begin();}/***  Returns a read-only (constant) reference to the data at the first*  element of the %deque.*/const_referencefront() const _GLIBCXX_NOEXCEPT{__glibcxx_requires_nonempty();return *begin();}/***  Returns a read/write reference to the data at the last element of the*  %deque.*/referenceback() _GLIBCXX_NOEXCEPT{__glibcxx_requires_nonempty();iterator __tmp = end();--__tmp;return *__tmp;}/***  Returns a read-only (constant) reference to the data at the last*  element of the %deque.*/const_referenceback() const _GLIBCXX_NOEXCEPT{__glibcxx_requires_nonempty();const_iterator __tmp = end();--__tmp;return *__tmp;}// [23.2.1.2] modifiers/***  @brief  Add data to the front of the %deque.*  @param  __x  Data to be added.**  This is a typical stack operation.  The function creates an*  element at the front of the %deque and assigns the given*  data to it.  Due to the nature of a %deque this operation*  can be done in constant time.*/voidpush_front(const value_type& __x){if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first){_Alloc_traits::construct(this->_M_impl,this->_M_impl._M_start._M_cur - 1,__x);--this->_M_impl._M_start._M_cur;}else_M_push_front_aux(__x);}#if __cplusplus >= 201103Lvoidpush_front(value_type&& __x){ emplace_front(std::move(__x)); }template<typename... _Args>
#if __cplusplus > 201402Lreference
#elsevoid
#endifemplace_front(_Args&&... __args);
#endif/***  @brief  Add data to the end of the %deque.*  @param  __x  Data to be added.**  This is a typical stack operation.  The function creates an*  element at the end of the %deque and assigns the given data*  to it.  Due to the nature of a %deque this operation can be*  done in constant time.*/voidpush_back(const value_type& __x){if (this->_M_impl._M_finish._M_cur!= this->_M_impl._M_finish._M_last - 1){_Alloc_traits::construct(this->_M_impl,this->_M_impl._M_finish._M_cur, __x);++this->_M_impl._M_finish._M_cur;}else_M_push_back_aux(__x);}#if __cplusplus >= 201103Lvoidpush_back(value_type&& __x){ emplace_back(std::move(__x)); }template<typename... _Args>
#if __cplusplus > 201402Lreference
#elsevoid
#endifemplace_back(_Args&&... __args);
#endif/***  @brief  Removes first element.**  This is a typical stack operation.  It shrinks the %deque by one.**  Note that no data is returned, and if the first element's data is*  needed, it should be retrieved before pop_front() is called.*/voidpop_front() _GLIBCXX_NOEXCEPT{__glibcxx_requires_nonempty();if (this->_M_impl._M_start._M_cur!= this->_M_impl._M_start._M_last - 1){_Alloc_traits::destroy(this->_M_impl,this->_M_impl._M_start._M_cur);++this->_M_impl._M_start._M_cur;}else_M_pop_front_aux();}/***  @brief  Removes last element.**  This is a typical stack operation.  It shrinks the %deque by one.**  Note that no data is returned, and if the last element's data is*  needed, it should be retrieved before pop_back() is called.*/voidpop_back() _GLIBCXX_NOEXCEPT{__glibcxx_requires_nonempty();if (this->_M_impl._M_finish._M_cur!= this->_M_impl._M_finish._M_first){--this->_M_impl._M_finish._M_cur;_Alloc_traits::destroy(this->_M_impl,this->_M_impl._M_finish._M_cur);}else_M_pop_back_aux();}#if __cplusplus >= 201103L/***  @brief  Inserts an object in %deque before specified iterator.*  @param  __position  A const_iterator into the %deque.*  @param  __args  Arguments.*  @return  An iterator that points to the inserted data.**  This function will insert an object of type T constructed*  with T(std::forward<Args>(args)...) before the specified location.*/template<typename... _Args>iteratoremplace(const_iterator __position, _Args&&... __args);/***  @brief  Inserts given value into %deque before specified iterator.*  @param  __position  A const_iterator into the %deque.*  @param  __x  Data to be inserted.*  @return  An iterator that points to the inserted data.**  This function will insert a copy of the given value before the*  specified location.*/iteratorinsert(const_iterator __position, const value_type& __x);
#else/***  @brief  Inserts given value into %deque before specified iterator.*  @param  __position  An iterator into the %deque.*  @param  __x  Data to be inserted.*  @return  An iterator that points to the inserted data.**  This function will insert a copy of the given value before the*  specified location.*/iteratorinsert(iterator __position, const value_type& __x);
#endif#if __cplusplus >= 201103L/***  @brief  Inserts given rvalue into %deque before specified iterator.*  @param  __position  A const_iterator into the %deque.*  @param  __x  Data to be inserted.*  @return  An iterator that points to the inserted data.**  This function will insert a copy of the given rvalue before the*  specified location.*/iteratorinsert(const_iterator __position, value_type&& __x){ return emplace(__position, std::move(__x)); }/***  @brief  Inserts an initializer list into the %deque.*  @param  __p  An iterator into the %deque.*  @param  __l  An initializer_list.**  This function will insert copies of the data in the*  initializer_list @a __l into the %deque before the location*  specified by @a __p.  This is known as <em>list insert</em>.*/iteratorinsert(const_iterator __p, initializer_list<value_type> __l){auto __offset = __p - cbegin();_M_range_insert_aux(__p._M_const_cast(), __l.begin(), __l.end(),std::random_access_iterator_tag());return begin() + __offset;}
#endif#if __cplusplus >= 201103L/***  @brief  Inserts a number of copies of given data into the %deque.*  @param  __position  A const_iterator into the %deque.*  @param  __n  Number of elements to be inserted.*  @param  __x  Data to be inserted.*  @return  An iterator that points to the inserted data.**  This function will insert a specified number of copies of the given*  data before the location specified by @a __position.*/iteratorinsert(const_iterator __position, size_type __n, const value_type& __x){difference_type __offset = __position - cbegin();_M_fill_insert(__position._M_const_cast(), __n, __x);return begin() + __offset;}
#else/***  @brief  Inserts a number of copies of given data into the %deque.*  @param  __position  An iterator into the %deque.*  @param  __n  Number of elements to be inserted.*  @param  __x  Data to be inserted.**  This function will insert a specified number of copies of the given*  data before the location specified by @a __position.*/voidinsert(iterator __position, size_type __n, const value_type& __x){ _M_fill_insert(__position, __n, __x); }
#endif#if __cplusplus >= 201103L/***  @brief  Inserts a range into the %deque.*  @param  __position  A const_iterator into the %deque.*  @param  __first  An input iterator.*  @param  __last   An input iterator.*  @return  An iterator that points to the inserted data.**  This function will insert copies of the data in the range*  [__first,__last) into the %deque before the location specified*  by @a __position.  This is known as <em>range insert</em>.*/template<typename _InputIterator,typename = std::_RequireInputIter<_InputIterator>>iteratorinsert(const_iterator __position, _InputIterator __first,_InputIterator __last){difference_type __offset = __position - cbegin();_M_insert_dispatch(__position._M_const_cast(),__first, __last, __false_type());return begin() + __offset;}
#else/***  @brief  Inserts a range into the %deque.*  @param  __position  An iterator into the %deque.*  @param  __first  An input iterator.*  @param  __last   An input iterator.**  This function will insert copies of the data in the range*  [__first,__last) into the %deque before the location specified*  by @a __position.  This is known as <em>range insert</em>.*/template<typename _InputIterator>voidinsert(iterator __position, _InputIterator __first,_InputIterator __last){// Check whether it's an integral type.  If so, it's not an iterator.typedef typename std::__is_integer<_InputIterator>::__type _Integral;_M_insert_dispatch(__position, __first, __last, _Integral());}
#endif/***  @brief  Remove element at given position.*  @param  __position  Iterator pointing to element to be erased.*  @return  An iterator pointing to the next element (or end()).**  This function will erase the element at the given position and thus*  shorten the %deque by one.**  The user is cautioned that*  this function only erases the element, and that if the element is*  itself a pointer, the pointed-to memory is not touched in any way.*  Managing the pointer is the user's responsibility.*/iterator
#if __cplusplus >= 201103Lerase(const_iterator __position)
#elseerase(iterator __position)
#endif{ return _M_erase(__position._M_const_cast()); }/***  @brief  Remove a range of elements.*  @param  __first  Iterator pointing to the first element to be erased.*  @param  __last  Iterator pointing to one past the last element to be*                erased.*  @return  An iterator pointing to the element pointed to by @a last*           prior to erasing (or end()).**  This function will erase the elements in the range*  [__first,__last) and shorten the %deque accordingly.**  The user is cautioned that*  this function only erases the elements, and that if the elements*  themselves are pointers, the pointed-to memory is not touched in any*  way.  Managing the pointer is the user's responsibility.*/iterator
#if __cplusplus >= 201103Lerase(const_iterator __first, const_iterator __last)
#elseerase(iterator __first, iterator __last)
#endif{ return _M_erase(__first._M_const_cast(), __last._M_const_cast()); }/***  @brief  Swaps data with another %deque.*  @param  __x  A %deque of the same element and allocator types.**  This exchanges the elements between two deques in constant time.*  (Four pointers, so it should be quite fast.)*  Note that the global std::swap() function is specialized such that*  std::swap(d1,d2) will feed to this function.**  Whether the allocators are swapped depends on the allocator traits.*/voidswap(deque& __x) _GLIBCXX_NOEXCEPT{
#if __cplusplus >= 201103L__glibcxx_assert(_Alloc_traits::propagate_on_container_swap::value|| _M_get_Tp_allocator() == __x._M_get_Tp_allocator());
#endif_M_impl._M_swap_data(__x._M_impl);_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),__x._M_get_Tp_allocator());}/***  Erases all the elements.  Note that this function only erases the*  elements, and that if the elements themselves are pointers, the*  pointed-to memory is not touched in any way.  Managing the pointer is*  the user's responsibility.*/voidclear() _GLIBCXX_NOEXCEPT{ _M_erase_at_end(begin()); }protected:// Internal constructor functions follow.// called by the range constructor to implement [23.1.1]/9// _GLIBCXX_RESOLVE_LIB_DEFECTS// 438. Ambiguity in the "do the right thing" clausetemplate<typename _Integer>void_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type){_M_initialize_map(static_cast<size_type>(__n));_M_fill_initialize(__x);}// called by the range constructor to implement [23.1.1]/9template<typename _InputIterator>void_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,__false_type){_M_range_initialize(__first, __last,std::__iterator_category(__first));}// called by the second initialize_dispatch above//@{/***  @brief Fills the deque with whatever is in [first,last).*  @param  __first  An input iterator.*  @param  __last  An input iterator.*  @return   Nothing.**  If the iterators are actually forward iterators (or better), then the*  memory layout can be done all at once.  Else we move forward using*  push_back on each value from the iterator.*/template<typename _InputIterator>void_M_range_initialize(_InputIterator __first, _InputIterator __last,std::input_iterator_tag);// called by the second initialize_dispatch abovetemplate<typename _ForwardIterator>void_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,std::forward_iterator_tag);//@}/***  @brief Fills the %deque with copies of value.*  @param  __value  Initial value.*  @return   Nothing.*  @pre _M_start and _M_finish have already been initialized,*  but none of the %deque's elements have yet been constructed.**  This function is called only when the user provides an explicit size*  (with or without an explicit exemplar value).*/void_M_fill_initialize(const value_type& __value);#if __cplusplus >= 201103L// called by deque(n).void_M_default_initialize();
#endif// Internal assign functions follow.  The *_aux functions do the actual// assignment work for the range versions.// called by the range assign to implement [23.1.1]/9// _GLIBCXX_RESOLVE_LIB_DEFECTS// 438. Ambiguity in the "do the right thing" clausetemplate<typename _Integer>void_M_assign_dispatch(_Integer __n, _Integer __val, __true_type){ _M_fill_assign(__n, __val); }// called by the range assign to implement [23.1.1]/9template<typename _InputIterator>void_M_assign_dispatch(_InputIterator __first, _InputIterator __last,__false_type){ _M_assign_aux(__first, __last, std::__iterator_category(__first)); }// called by the second assign_dispatch abovetemplate<typename _InputIterator>void_M_assign_aux(_InputIterator __first, _InputIterator __last,std::input_iterator_tag);// called by the second assign_dispatch abovetemplate<typename _ForwardIterator>void_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,std::forward_iterator_tag){const size_type __len = std::distance(__first, __last);if (__len > size()){_ForwardIterator __mid = __first;std::advance(__mid, size());std::copy(__first, __mid, begin());_M_range_insert_aux(end(), __mid, __last,std::__iterator_category(__first));}else_M_erase_at_end(std::copy(__first, __last, begin()));}// Called by assign(n,t), and the range assign when it turns out// to be the same thing.void_M_fill_assign(size_type __n, const value_type& __val){if (__n > size()){std::fill(begin(), end(), __val);_M_fill_insert(end(), __n - size(), __val);}else{_M_erase_at_end(begin() + difference_type(__n));std::fill(begin(), end(), __val);}}//@{/// Helper functions for push_* and pop_*.
#if __cplusplus < 201103Lvoid _M_push_back_aux(const value_type&);void _M_push_front_aux(const value_type&);
#elsetemplate<typename... _Args>void _M_push_back_aux(_Args&&... __args);template<typename... _Args>void _M_push_front_aux(_Args&&... __args);
#endifvoid _M_pop_back_aux();void _M_pop_front_aux();//@}// Internal insert functions follow.  The *_aux functions do the actual// insertion work when all shortcuts fail.// called by the range insert to implement [23.1.1]/9// _GLIBCXX_RESOLVE_LIB_DEFECTS// 438. Ambiguity in the "do the right thing" clausetemplate<typename _Integer>void_M_insert_dispatch(iterator __pos,_Integer __n, _Integer __x, __true_type){ _M_fill_insert(__pos, __n, __x); }// called by the range insert to implement [23.1.1]/9template<typename _InputIterator>void_M_insert_dispatch(iterator __pos,_InputIterator __first, _InputIterator __last,__false_type){_M_range_insert_aux(__pos, __first, __last,std::__iterator_category(__first));}// called by the second insert_dispatch abovetemplate<typename _InputIterator>void_M_range_insert_aux(iterator __pos, _InputIterator __first,_InputIterator __last, std::input_iterator_tag);// called by the second insert_dispatch abovetemplate<typename _ForwardIterator>void_M_range_insert_aux(iterator __pos, _ForwardIterator __first,_ForwardIterator __last, std::forward_iterator_tag);// Called by insert(p,n,x), and the range insert when it turns out to be// the same thing.  Can use fill functions in optimal situations,// otherwise passes off to insert_aux(p,n,x).void_M_fill_insert(iterator __pos, size_type __n, const value_type& __x);// called by insert(p,x)
#if __cplusplus < 201103Literator_M_insert_aux(iterator __pos, const value_type& __x);
#elsetemplate<typename... _Args>iterator_M_insert_aux(iterator __pos, _Args&&... __args);
#endif// called by insert(p,n,x) via fill_insertvoid_M_insert_aux(iterator __pos, size_type __n, const value_type& __x);// called by range_insert_aux for forward iteratorstemplate<typename _ForwardIterator>void_M_insert_aux(iterator __pos,_ForwardIterator __first, _ForwardIterator __last,size_type __n);// Internal erase functions follow.void_M_destroy_data_aux(iterator __first, iterator __last);// Called by ~deque().// NB: Doesn't deallocate the nodes.template<typename _Alloc1>void_M_destroy_data(iterator __first, iterator __last, const _Alloc1&){ _M_destroy_data_aux(__first, __last); }void_M_destroy_data(iterator __first, iterator __last,const std::allocator<_Tp>&){if (!__has_trivial_destructor(value_type))_M_destroy_data_aux(__first, __last);}// Called by erase(q1, q2).void_M_erase_at_begin(iterator __pos){_M_destroy_data(begin(), __pos, _M_get_Tp_allocator());_M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);this->_M_impl._M_start = __pos;}// Called by erase(q1, q2), resize(), clear(), _M_assign_aux,// _M_fill_assign, operator=.void_M_erase_at_end(iterator __pos){_M_destroy_data(__pos, end(), _M_get_Tp_allocator());_M_destroy_nodes(__pos._M_node + 1,this->_M_impl._M_finish._M_node + 1);this->_M_impl._M_finish = __pos;}iterator_M_erase(iterator __pos);iterator_M_erase(iterator __first, iterator __last);#if __cplusplus >= 201103L// Called by resize(sz).void_M_default_append(size_type __n);bool_M_shrink_to_fit();
#endif//@{/// Memory-handling helpers for the previous internal insert functions.iterator_M_reserve_elements_at_front(size_type __n){const size_type __vacancies = this->_M_impl._M_start._M_cur- this->_M_impl._M_start._M_first;if (__n > __vacancies)_M_new_elements_at_front(__n - __vacancies);return this->_M_impl._M_start - difference_type(__n);}iterator_M_reserve_elements_at_back(size_type __n){const size_type __vacancies = (this->_M_impl._M_finish._M_last- this->_M_impl._M_finish._M_cur) - 1;if (__n > __vacancies)_M_new_elements_at_back(__n - __vacancies);return this->_M_impl._M_finish + difference_type(__n);}void_M_new_elements_at_front(size_type __new_elements);void_M_new_elements_at_back(size_type __new_elements);//@}//@{/***  @brief Memory-handling helpers for the major %map.**  Makes sure the _M_map has space for new nodes.  Does not*  actually add the nodes.  Can invalidate _M_map pointers.*  (And consequently, %deque iterators.)*/void_M_reserve_map_at_back(size_type __nodes_to_add = 1){if (__nodes_to_add + 1 > this->_M_impl._M_map_size- (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))_M_reallocate_map(__nodes_to_add, false);}void_M_reserve_map_at_front(size_type __nodes_to_add = 1){if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node- this->_M_impl._M_map))_M_reallocate_map(__nodes_to_add, true);}void_M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);//@}#if __cplusplus >= 201103L// Constant-time, nothrow move assignment when source object's memory// can be moved because the allocators are equal.void_M_move_assign1(deque&& __x, /* always equal: */ true_type) noexcept{this->_M_impl._M_swap_data(__x._M_impl);__x.clear();std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());}// When the allocators are not equal the operation could throw, because// we might need to allocate a new map for __x after moving from it// or we might need to allocate new elements for *this.void_M_move_assign1(deque&& __x, /* always equal: */ false_type){constexpr bool __move_storage =_Alloc_traits::_S_propagate_on_move_assign();_M_move_assign2(std::move(__x), __bool_constant<__move_storage>());}// Destroy all elements and deallocate all memory, then replace// with elements created from __args.template<typename... _Args>void_M_replace_map(_Args&&... __args){// Create new data first, so if allocation fails there are no effects.deque __newobj(std::forward<_Args>(__args)...);// Free existing storage using existing allocator.clear();_M_deallocate_node(*begin()._M_node); // one node left after clear()_M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);this->_M_impl._M_map = nullptr;this->_M_impl._M_map_size = 0;// Take ownership of replacement memory.this->_M_impl._M_swap_data(__newobj._M_impl);}// Do move assignment when the allocator propagates.void_M_move_assign2(deque&& __x, /* propagate: */ true_type){// Make a copy of the original allocator state.auto __alloc = __x._M_get_Tp_allocator();// The allocator propagates so storage can be moved from __x,// leaving __x in a valid empty state with a moved-from allocator._M_replace_map(std::move(__x));// Move the corresponding allocator state too._M_get_Tp_allocator() = std::move(__alloc);}// Do move assignment when it may not be possible to move source// object's memory, resulting in a linear-time operation.void_M_move_assign2(deque&& __x, /* propagate: */ false_type){if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator()){// The allocators are equal so storage can be moved from __x,// leaving __x in a valid empty state with its current allocator._M_replace_map(std::move(__x), __x.get_allocator());}else{// The rvalue's allocator cannot be moved and is not equal,// so we need to individually move each element._M_assign_aux(std::__make_move_if_noexcept_iterator(__x.begin()),std::__make_move_if_noexcept_iterator(__x.end()),std::random_access_iterator_tag());__x.clear();}}
#endif};#if __cpp_deduction_guides >= 201606template<typename _InputIterator, typename _ValT= typename iterator_traits<_InputIterator>::value_type,typename _Allocator = allocator<_ValT>,typename = _RequireInputIter<_InputIterator>,typename = _RequireAllocator<_Allocator>>deque(_InputIterator, _InputIterator, _Allocator = _Allocator())-> deque<_ValT, _Allocator>;
#endif/***  @brief  Deque equality comparison.*  @param  __x  A %deque.*  @param  __y  A %deque of the same type as @a __x.*  @return  True iff the size and elements of the deques are equal.**  This is an equivalence relation.  It is linear in the size of the*  deques.  Deques are considered equivalent if their sizes are equal,*  and if corresponding elements compare equal.*/template<typename _Tp, typename _Alloc>inline booloperator==(const deque<_Tp, _Alloc>& __x,const deque<_Tp, _Alloc>& __y){ return __x.size() == __y.size()&& std::equal(__x.begin(), __x.end(), __y.begin()); }/***  @brief  Deque ordering relation.*  @param  __x  A %deque.*  @param  __y  A %deque of the same type as @a __x.*  @return  True iff @a x is lexicographically less than @a __y.**  This is a total ordering relation.  It is linear in the size of the*  deques.  The elements must be comparable with @c <.**  See std::lexicographical_compare() for how the determination is made.*/template<typename _Tp, typename _Alloc>inline booloperator<(const deque<_Tp, _Alloc>& __x,const deque<_Tp, _Alloc>& __y){ return std::lexicographical_compare(__x.begin(), __x.end(),__y.begin(), __y.end()); }/// Based on operator==template<typename _Tp, typename _Alloc>inline booloperator!=(const deque<_Tp, _Alloc>& __x,const deque<_Tp, _Alloc>& __y){ return !(__x == __y); }/// Based on operator<template<typename _Tp, typename _Alloc>inline booloperator>(const deque<_Tp, _Alloc>& __x,const deque<_Tp, _Alloc>& __y){ return __y < __x; }/// Based on operator<template<typename _Tp, typename _Alloc>inline booloperator<=(const deque<_Tp, _Alloc>& __x,const deque<_Tp, _Alloc>& __y){ return !(__y < __x); }/// Based on operator<template<typename _Tp, typename _Alloc>inline booloperator>=(const deque<_Tp, _Alloc>& __x,const deque<_Tp, _Alloc>& __y){ return !(__x < __y); }/// See std::deque::swap().template<typename _Tp, typename _Alloc>inline voidswap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)_GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y))){ __x.swap(__y); }#undef _GLIBCXX_DEQUE_BUF_SIZE_GLIBCXX_END_NAMESPACE_CONTAINER
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std#endif /* _STL_DEQUE_H */

如果你觉得这篇文章对你有帮助,不妨动动手指给点赞收藏加转发,给鄃鳕一个大大的关注你们的每一次支持都将转化为我前进的动力!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/92806.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

矢量绘图UI设计软件Sketch mac中文版软件说明

Sketch mac是一款适用于 UI/UX 设计、网页设计、图标制作等领域的矢量绘图软件。 Sketch mac软件特点 1. 简单易用的界面设计&#xff1a;Sketch 的用户界面简洁明了&#xff0c;使得用户可以轻松上手操作&#xff0c;不需要复杂的学习过程。 2. 强大的矢量绘图功能&#xff1a…

驱动day3

思维导图 练习 1.编写LED灯的驱动&#xff0c;可以控制三个灯&#xff0c;应用程序中编写控制灯的逻辑&#xff0c;要使用自动创建设备节点机制 head.h #ifndef __HEAD_H__ #define __HEAD_H__typedef struct {unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR…

SharkTeam:Worldcoin运营数据及业务安全分析

Worldcoin的白皮书中声明&#xff0c;Worldcoin旨在构建一个连接全球人类的新型数字经济系统&#xff0c;由OpenAI创始人Sam Altman于2020年发起。通过区块链技术在Web3世界中实现更加公平、开放和包容的经济体系&#xff0c;并将所有权赋予每个人。并且希望让全世界每一个人都…

Android中如何不编译源生模块

如果想让自己的app 替换系统的app 比如使用闪电浏览器替换系统的Browser 首先把闪电浏览器放到 vendor/rockchip/common/apps Android.mk LOCAL_PATH : $(call my-dir) include $(CLEAR_VARS)LOCAL_MODULE : Lightning LOCAL_SRC_FILES : $(LOCAL_MODULE).apk LOCAL_MODULE_C…

Unity如何把游戏导出成手机安装包

文章目录 前言使用环境步骤添加场景构建APK 前言 本文章主要演示了&#xff0c;如何将制作好的游戏&#xff0c;导出成APK&#xff0c;安装到手机上。 使用环境 Unity2022。 步骤 首先打开你的项目&#xff0c;然后选择菜单栏的“File” > “Build Settings…”&#xf…

windows权限维持—SSPHOOKDSRMSIDhistorySkeletonKey

windows权限维持—SSP&HOOK&DSRM&SIDhistory&SkeletonKey 1. 权限维持介绍1.1. 其他 2. 基于验证DLL加载—SPP2.1. 操作演示—临时生效2.1.1. 执行命令2.1.2. 切换用户 2.2. 操作演示—永久生效2.2.1. 上传文件2.2.2. 执行命令2.2.3. 重启生效 2.3. 总结 3. 基…

c语言每日一练(8)

前言&#xff1a;每日一练系列&#xff0c;每一期都包含5道选择题&#xff0c;2道编程题&#xff0c;博主会尽可能详细地进行讲解&#xff0c;令初学者也能听的清晰。每日一练系列会持续更新&#xff0c;暑假时三天之内必有一更&#xff0c;到了开学之后&#xff0c;将看学业情…

日常BUG——SpringBoot模糊映射

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;日常BUG、BUG、问题分析☀️每日 一言 &#xff1a;存在错误说明你在进步&#xff01; 一、问题描述 SpringBoot在启动时报出如下错误&#xff1a; Caused by: java.lang.IllegalStateExceptio…

springboot启动忽略某些类

springboot启动忽略某些类 描述解决方案单拉一个提交&#xff0c;把所有的涉及kafka消费的都不注入容器通过配置ComponentScan的excludeFilters配置了不生效后续处理改之前改之后解释 总结 拆分环境 感触解决实现demo参考 描述 目前我这的开发环境和测试环境数据库是两份&#…

Java真实面试题,offer已到手

关于学习 在黑马程序员刚刚开始的时候学习尽头非常足&#xff0c;到后面逐渐失去了一些兴趣&#xff0c;以至于后面上课会出现走神等问题&#xff0c;但是毕业时后悔晚矣。等到开始学习项目一的时候&#xff0c;思路总会比别人慢一些&#xff0c;不看讲义写不出来代码。 建议…

virtualBox桥接模式下openEuler镜像修改IP地址、openEule修改IP地址、openEule设置IP地址

安装好openEuler后,设置远程登入前,必不可少的一步,主机与虚拟机之间的通信要解决,下面给出详细步骤: 第一步:检查虚拟机适配器模式:桥接模式 第二步:登入虚拟机修改IP cd /etc/sysconfig/network-scripts vim ifcfg-enpgs3 没有vim的安装或者用vi代替:sudo dnf …

设计模式(6)原型模式

一、介绍 Java中自带的原型模式是clone()方法。该方法是Object的方法&#xff0c;native类型。他的作用就是将对象的在内存的那一块内存数据一字不差地再复制一个。我们写简单类的时候只需要实现Cloneable接口&#xff0c;然后调用Object::clone方法就可实现克隆功能。这样实现…

[oneAPI] 图像分类CIFAR-10

[oneAPI] 图像分类CIFAR-10 图像分类参数与包加载数据模型训练过程结果 oneAPI 比赛&#xff1a;https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI&#xff1a;https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSam…

解决内网GitLab 社区版 15.11.13项目拉取失败

问题描述 GitLab 社区版 发布不久&#xff0c;搭建在内网拉取项目报错&#xff0c;可能提示 unable to access https://github.comxxxxxxxxxxx: Failed to connect to xxxxxxxxxxxxxGit clone error - Invalid argument error:14077438:SSL routines:SSL23_GET_S 15.11.13ht…

【学会动态规划】乘积为正数的最长子数组长度(21)

目录 动态规划怎么学&#xff1f; 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后&#xff1a; 动态规划怎么学&#xff1f; 学习一个算法没有捷径&#xff0c;更何况是学习动态规划&#xff0c; 跟我…

《系统架构设计师教程》重点章节思维导图

内容来自《系统架构设计师教程》&#xff0c;筛选系统架构设计师考试中分值重点分布的章节&#xff0c;根据章节的内容整理出相关思维导图。 重点章节 第2章&#xff1a;计算机系统知识第5章&#xff1a;软件工程基础知识第7章&#xff1a;系统架构设计基础知识第8章&#xff1…

常见程序搜索关键字转码

个别搜索类的网站因为用户恶意搜索出现误拦截情况&#xff0c;这类网站本身没有非法信息&#xff0c;只是因为把搜索关键字显示在网页中&#xff08;如下图&#xff09;&#xff0c;可以参考下面方法对输出的关键字进行转码 DEDECMS程序 本文针对Dedecms程序进行搜索转码&…

XXL-JOB任务调度平台的安装使用教程

首先从GitHub上面将项目clone下来。 GitHub地址&#xff1a;https://gitee.com/xuxueli0323/xxl-job.git 下载好之后&#xff0c;然后通过IDEA打开&#xff0c;将Maven编译好后项目结构如下 在数据库中运行这个SQL文件 &#xff0c;将基础表创建出来。就可以得到左边图中那些表…

复合 类型

字符串和切片 切片 切片的作用是允许你引用集合中部分连续的元素序列&#xff0c;而不是引用整个集合。 例如&#xff1a; let s String::from("hello world");let hello &s[0..5]; // 切片 [0,5) 等效于&s[..5] let world &s[6..11]; // 切片…

电脑缺失msvcp140.dll怎么办?解决msvcp140.dll缺失问题

msvcp140.dll是Microsoft Visual C Redistributable中的一个动态链接库文件&#xff0c;用于提供运行时支持。它的主要作用是为应用程序提供必要的函数和组件&#xff0c;以便在运行时执行特定的任务。当系统中缺少msvcp140.dll文件时&#xff0c;我们打开游戏或许软件时候就会…