【后端必看】Redis 最佳实践

文章目录

  • 1. Redis 键值设计
    • 1.1 优雅的 key 结构
    • 1.2 拒绝 BigKey
      • BigKey的危害
      • 如何发现BigKey
        • ①redis-cli --bigkeys
        • ② scan 扫描
        • ③第三方监控
        • ④网络监控
      • 如何删除 BigKey
    • 1.3 恰当的数据类型
      • 总结:
  • 2. 批处理优化
  • 3. 服务器端优化-持久化配置
  • 4. 服务器端优化-慢查询优化
    • 4.1 什么是慢查询
    • 4.2 如何查看慢查询
  • 5. 服务器端优化-命令及安全配置
  • 6. 服务器端优化- Redis 内存划分和内存配置
  • 7. 服务器端集群优化-集群还是主从


在这里插入图片描述

1. Redis 键值设计

1.1 优雅的 key 结构

Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:

  • 遵循基本格式:[业务名称]:[数据名]:[id]
  • 长度不超过44字节
  • 不包含特殊字符

例如:我们的登录业务,保存用户信息,其key可以设计成如下格式:
key
这样设计的好处:

  • 可读性强
  • 避免 key 冲突
  • 方便管理
  • 更节省内存: key 是 String 类型,底层编码包含int、embstr 和r aw 三种。embstr 在小于44字节使用,采用连续内存空间,内存占用更小。当字节数大于44字节时,会转为 raw 模式存储,在 raw 模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储 SDS 内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片

1.2 拒绝 BigKey

BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:

  • Key本身的数据量过大:一个String类型的Key,它的值为5 MB
  • Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个
  • Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB

那么如何判断元素的大小呢?redis也给我们提供了命令
image-20220521124650117.png
推荐值:

  • 单个 key 的 value 小于10KB
  • 对于集合类型的 key,建议元素数量小于1000

BigKey的危害

  • 网络阻塞
    • 对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
  • 数据倾斜
    • BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
  • Redis阻塞
    • 对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
  • CPU压力
    • 对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用

如何发现BigKey

①redis-cli --bigkeys

利用redis-cli提供的–bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key
命令:redis-cli -a 密码 --bigkeys
image-20220521133359507.png

② scan 扫描

自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)
image-20220521133703245.png
scan 命令调用完后每次会返回2个元素,第一个是下一次迭代的光标,第一次光标会设置为0,当最后一次scan 返回的光标等于0时,表示整个scan遍历结束了,第二个返回的是List,一个匹配的key的数组
Redis 实战-扫描 bigKey

③第三方监控

  • 利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况
  • https://github.com/sripathikrishnan/redis-rdb-tools

④网络监控

  • 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
  • 一般阿里云搭建的云服务器就有相关监控页面

如何删除 BigKey

BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。

  • redis 3.0 及以下版本
    • 如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey
  • Redis 4.0以后
    • Redis在4.0后提供了异步删除的命令:unlink

1.3 恰当的数据类型

注意:对于 hash 类型,entry 不超过 500 时底层使用的 ziplist 数据类型,占用空间小。hash 的 entry 数量超过500时,会使用哈希表而不是ZipList,内存占用较多。

总结:

  • Key的最佳实践
    • 固定格式:[业务名]:[数据名]:[id]
    • 足够简短:不超过44字节
    • 不包含特殊字符
  • Value的最佳实践:
    • 合理的拆分数据,拒绝BigKey
    • 选择合适数据结构
    • Hash结构的entry数量不要超过1000
    • 设置合理的超时时间

2. 批处理优化

3. 服务器端优化-持久化配置

Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:

  • 用来做缓存的Redis实例尽量不要开启持久化功能
  • 建议关闭RDB持久化功能,使用AOF持久化
  • 利用脚本定期在slave节点做RDB,实现数据备份
  • 设置合理的rewrite阈值,避免频繁的bgrewrite
  • 配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞
  • 部署有关建议:
    • Redis实例的物理机要预留足够内存,应对fork和rewrite
    • 单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力
    • 不要与CPU密集型应用部署在一起
    • 不要与高硬盘负载应用一起部署。例如:数据库、消息队列

4. 服务器端优化-慢查询优化

4.1 什么是慢查询

并不是很慢的查询才是慢查询,而是:在Redis执行时耗时超过某个阈值的命令,称为慢查询。
慢查询的危害:由于Redis是单线程的,所以当客户端发出指令后,他们都会进入到redis底层的queue来执行,如果此时有一些慢查询的数据,就会导致大量请求阻塞,从而引起报错,所以我们需要解决慢查询问题。
1653129590210.png
慢查询的阈值可以通过配置指定:
slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是10000,建议1000
慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:
slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是128,建议1000
1653130457771.png

修改这两个配置可以使用:config set命令:
1653130475979.png

4.2 如何查看慢查询

知道了以上内容之后,那么咱们如何去查看慢查询日志列表呢:

  • slowlog len:查询慢查询日志长度
  • slowlog get [n]:读取n条慢查询日志
  • slowlog reset:清空慢查询列表

1653130858066.png

5. 服务器端优化-命令及安全配置

安全可以说是服务器端一个非常重要的话题,如果安全出现了问题,那么一旦这个漏洞被一些坏人知道了之后,并且进行攻击,那么这就会给咱们的系统带来很多的损失,所以我们这节课就来解决这个问题。
Redis会绑定在0.0.0.0:6379,这样将会将Redis服务暴露到公网上,而Redis如果没有做身份认证,会出现严重的安全漏洞.漏洞重现方式:https://cloud.tencent.com/developer/article/1039000
为什么会出现不需要密码也能够登录呢,主要是Redis考虑到每次登录都比较麻烦,所以Redis就有一种ssh免秘钥登录的方式,生成一对公钥和私钥,私钥放在本地,公钥放在redis端,当我们登录时服务器,再登录时候,他会去解析公钥和私钥,如果没有问题,则不需要利用redis的登录也能访问,这种做法本身也很常见,但是这里有一个前提,前提就是公钥必须保存在服务器上,才行,但是Redis的漏洞在于在不登录的情况下,也能把秘钥送到Linux服务器,从而产生漏洞
漏洞出现的核心的原因有以下几点:

  • Redis未设置密码
  • 利用了Redis的config set命令动态修改Redis配置
  • 使用了Root账号权限启动Redis

所以:如何解决呢?我们可以采用如下几种方案
为了避免这样的漏洞,这里给出一些建议:

  • Redis一定要设置密码
  • 禁止线上使用下面命令:keys、flushall、flushdb、config set等命令。可以利用rename-command禁用。
  • bind:限制网卡,禁止外网网卡访问
  • 开启防火墙
  • 不要使用Root账户启动Redis
  • 尽量不是有默认的端口

6. 服务器端优化- Redis 内存划分和内存配置

当Redis内存不足时,可能导致Key频繁被删除、响应时间变长、QPS不稳定等问题。当内存使用率达到90%以上时就需要我们警惕,并快速定位到内存占用的原因。

有关碎片问题分析
Redis底层分配并不是这个key有多大,他就会分配多大,而是有他自己的分配策略,比如8,16,20等等,假定当前key只需要10个字节,此时分配8肯定不够,那么他就会分配16个字节,多出来的6个字节就不能被使用,这就是我们常说的 碎片问题

进程内存问题分析:
这片内存,通常我们都可以忽略不计

缓冲区内存问题分析:
一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,所以这片内存也是我们需要重点分析的内存问题。

内存占用说明
数据内存是Redis最主要的部分,存储Redis的键值信息。主要问题是BigKey问题、内存碎片问题
进程内存Redis主进程本身运⾏肯定需要占⽤内存,如代码、常量池等等;这部分内存⼤约⼏兆,在⼤多数⽣产环境中与Redis数据占⽤的内存相⽐可以忽略。
缓冲区内存一般包括客户端缓冲区、AOF缓冲区、复制缓冲区等。客户端缓冲区又包括输入缓冲区和输出缓冲区两种。这部分内存占用波动较大,不当使用BigKey,可能导致内存溢出。

于是我们就需要通过一些命令,可以查看到Redis目前的内存分配状态:

  • info memory:查看内存分配的情况

1653132073570.png

  • memory xxx:查看key的主要占用情况

1653132098823.png
接下来我们看到了这些配置,最关键的缓存区内存如何定位和解决呢?
内存缓冲区常见的有三种:

  • 复制缓冲区:主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过replbacklog-size来设置,默认1mb
  • AOF缓冲区:AOF刷盘之前的缓存区域,AOF执行rewrite的缓冲区。无法设置容量上限
  • 客户端缓冲区:分为输入缓冲区和输出缓冲区,输入缓冲区最大1G且不能设置。输出缓冲区可以设置

以上复制缓冲区和AOF缓冲区 不会有问题,最关键就是客户端缓冲区的问题
客户端缓冲区:指的就是我们发送命令时,客户端用来缓存命令的一个缓冲区,也就是我们向redis输入数据的输入端缓冲区和redis向客户端返回数据的响应缓存区,输入缓冲区最大1G且不能设置,所以这一块我们根本不用担心,如果超过了这个空间,redis会直接断开,因为本来此时此刻就代表着redis处理不过来了,我们需要担心的就是输出端缓冲区
1653132410073.png
我们在使用redis过程中,处理大量的big value,那么会导致我们的输出结果过多,如果输出缓存区过大,会导致redis直接断开,而默认配置的情况下, 其实他是没有大小的,这就比较坑了,内存可能一下子被占满,会直接导致咱们的redis断开,所以解决方案有两个
1、设置一个大小
2、增加我们带宽的大小,避免我们出现大量数据从而直接超过了redis的承受能力

7. 服务器端集群优化-集群还是主从

集群虽然具备高可用特性,能实现自动故障恢复,但是如果使用不当,也会存在一些问题:

  • 集群完整性问题
  • 集群带宽问题
  • 数据倾斜问题
  • 客户端性能问题
  • 命令的集群兼容性问题
  • lua和事务问题

问题1、在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务:
大家可以设想一下,如果有几个 slot 不能使用,那么此时整个集群都不能用了,我们在开发中,其实最重要的是可用性,所以需要把如下配置修改成 no,即有slot不能使用时,我们的redis集群还是可以对外提供部分服务
1653132740637.png

问题2、集群带宽问题
集群节点之间会不断的互相Ping来确定集群中其它节点的状态。每次Ping携带的信息至少包括:

  • 插槽信息
  • 集群状态信息

集群中节点越多,集群状态信息数据量也越大,10个节点的相关信息可能达到1kb,此时每次集群互通需要的带宽会非常高,这样会导致集群中大量的带宽都会被ping信息所占用,这是一个非常可怕的问题,所以我们需要去解决这样的问题
解决途径:

  • 避免大集群,集群节点数不要太多,最好少于1000,如果业务庞大,则建立多个集群。
  • 避免在单个物理机中运行太多Redis实例
  • 配置合适的 cluster-node-timeout 值

问题3、命令的集群兼容性问题
有关这个问题咱们已经探讨过了,当我们使用批处理的命令时,redis要求我们的key必须落在相同的slot上,然后大量的key同时操作时,是无法完成的,所以客户端必须要对这样的数据进行处理,这些方案我们之前已经探讨过了,所以不再这个地方赘述了。

问题4、lua和事务的问题
lua和事务都是要保证原子性问题,如果你的key不在一个节点,那么是无法保证lua的执行和事务的特性的,所以在集群模式是没有办法执行lua和事务的

那我们到底是集群还是主从
单体Redis(主从Redis)已经能达到万级别的QPS,并且也具备很强的高可用特性。如果主从能满足业务需求的情况下,所以如果不是在万不得已的情况下,尽量不搭建Redis集群。





在这里插入图片描述



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/93130.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浅谈OCR中的David Shepard

在OCR(Optical Character Recognition,光学字符识别)中,David Shepard是一种早期的OCR技术,也被称为Shepards Method。 David Shepard是该OCR方法的原始作者。这种方法基于边界追踪算法,用于识别印刷体文本…

简单线性回归:预测事物间简单关系的利器

文章目录 🍀简介🍀什么是简单线性回归?🍀简单线性回归的应用场景使用步骤:注意事项: 🍀代码演示🍀结论 🍀简介 在数据科学领域,线性回归是一种基本而强大的统…

关于视频监控平台EasyCVR视频汇聚平台建设“明厨亮灶”具体实施方案以及应用

一、方案背景 近几年来,餐饮行业的食品安全、食品卫生等新闻频频发生,比如某火锅店、某网红奶茶,食材以次充好、后厨卫生被爆堪忧,种种问题引起大众关注和热议。这些负面新闻不仅让餐饮门店的品牌口碑暴跌,附带的连锁…

postman测试后端增删改查

目录 一、本文介绍 二、准备工作 (一)新建测试 (二)默认url路径查看方法 三、增删改查 (一)查询全部 (二)增加数据 (三)删除数据 (四&…

2022年电赛C题——小车跟随行驶系统——做题记录以及经验分享

前言 自己打算将做过的电赛真题,主要包含控制组的,近几年出现的小车控制题目,自己做过的真题以及在准备电赛期间刷真题出现的问题以及经验分享给大家 这次带来的是22年电赛C题——小车跟随行驶系统,这道题目指定使用的是TI的单片…

.Net程序调试时接受外部命令行参数方式

1.对项目右键,属性 2.在调试中打开常规,打开调试启动配置文件UI 3.输入需要的命令行参数

11. Docker Swarm(二)

1、前言 上一篇中我们利用Docker Swarm搭建了基础的集群环境。那么今天我们就来验证以下该集群的可用性。上一篇的示例中,我创建了3个实例副本,并且通过访问http://192.168.74.132:8080得到我们的页面。 2、验证高可用 1)我们可以通过以下命…

【深度学习--RNN 循环神经网络--附LSTM情感文本分类】

deep learning 系列 --RNN 循环神经网络 什么是序列模型 包括了RNN LSTM GRU等网络模型,主要用途是自然语言处理、语音识别等方面,比如生成乐曲,音频转换为文字,文本情感分类,机器翻译等等 标准模型的缺陷 以往的标…

基于ArcGis提取道路中心线

基于ArcGis提取道路中心线 文章目录 基于ArcGis提取道路中心线前言一、生成缓冲区二、导出栅格数据三、导入栅格数据四、新建中心线要素五、生成中心线总结 前言 最近遇到一个问题,根据道路SHP数据生成模型的时候由于下载的道路数据杂项数据很多,所以导…

windows server 2016 搭建使用 svn 服务器教程

参考教程: https://zhuanlan.zhihu.com/p/428552058 https://blog.csdn.net/weixin_33897722/article/details/85602029 配置环境 windows server 2016 远程服务器公网 ip 安装 SVN 服务端 下载 svn 服务端安装包:https://www.visualsvn.com/download…

Python Web框架:Django、Flask和FastAPI巅峰对决

今天,我们将深入探讨Python Web框架的三巨头:Django、Flask和FastAPI。无论你是Python小白还是老司机,本文都会为你解惑,带你领略这三者的魅力。废话不多说,让我们开始这场终极对比! Django:百…

Vue 项目运行 npm install 时,卡在 sill idealTree buildDeps 没有反应

解决方法:切换到淘宝镜像。 以下是之前安装的 xmzs 包,用于控制切换淘宝镜像。 该截图是之前其他项目切换淘宝镜像的截图。 切换镜像后,顺利执行 npm install 。

基于令牌级 BERT 嵌入的趋势生成句子级嵌入

一、说明 句子(短语或段落)级别嵌入通常用作许多 NLP 分类问题的输入,例如,在垃圾邮件检测和问答 (QA) 系统中。在我上一篇文章发现不同级别的BERT嵌入的趋势中,我讨论了如何生成一个向量表示&a…

docker安装国产开源数据库tidb 单机版

docker pull pingcap/tidb 创建目录,然后安装tidb mkdir -p /data/tidb/data 创建容器 docker run --name tidb -d -v /data/tidb/data:/tmp/tidb --privilegedtrue -p 4000:4000 -p 10080:10080 pingcap/tidb:latest TiDB 简介 | PingCAP 文档中心

LabVIEW使用图像处理进行交通控制性能分析

LabVIEW使用图像处理进行交通控制性能分析 采用普雷维特、拉普拉斯、索贝尔和任意的空间域方法对存储的图像进行边缘检测,并获取实时图像。然而,对四种不同空间域边缘检测方法的核的性能分析。 以前,空路图像存储在数据库中,道路…

Python 使用Hadoop 3 之HDFS 总结

Hadoop 概述 Hadoop 是一个由Apache 软件基金会开发的分布式基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序,充分利用集群的威力进行高速运算和存储。 Hadoop 实现一个分布式文件系统(Hadoop Distributed File Sy…

电脑键盘打不了字按哪个键恢复?最新分享!

“有没有朋友知道电脑键盘为什么会莫名其妙就打不了字?明明用得好好的,突然就打不了字了,真的让人很迷惑!有什么方法可以解决吗?” 电脑键盘为我们的办公提供了很大的方便,我们可以利用键盘输入我们需要的文…

Redis对象和五种常用数据类型

Redisobject 对象 对象分为键对象和值对象 键对象一般是string类型 值对象可以是string,list,set,zset,hash q:redisobj的结构 typedef struct redisObject { //类型 unsigned type:4; //编码 unsigned encoding:4; //指向底层实现…

diffusion model (七) diffusion model是一个zero-shot 分类器

Paper: Your Diffusion Model is Secretly a Zero-Shot Classifier Website: diffusion-classifier.github.io/ 文章目录 相关阅读背景方法大意diffusion model的背景知识如何将diffusion model应用到zero-shot classification如何求解 实验参考文献 相关阅读 diffusion mode…

数学建模之“层次分析法”原理和代码详解

一、层次分析法简介 层次分析法(Analytic Hierarchy Process,AHP)是一种用于多准则决策分析和评估问题的定量方法,常用于数学建模中。它是由数学家托马斯赛蒂(Thomas Saaty)开发的。 层次分析法将复杂的决…