opencv进阶08-K 均值聚类cv2.kmeans()介绍及示例

K均值聚类是一种常用的无监督学习算法,用于将一组数据点分成不同的簇(clusters),以便数据点在同一簇内更相似,而不同簇之间差异较大。K均值聚类的目标是通过最小化数据点与所属簇中心之间的距离来形成簇。

当我们要预测的是一个离散值时,做的工作就是“分类”。例如,要预测一个孩子能否成为优秀的运动员,其实就是要将他分到“好苗子”(能成为优秀的运动员)或“普通孩子”(不能成为优秀运动员)的类别。当我们要预测的是一个连续值时,做的工作就是“回归”。

例如,预测一个孩子将来成为运动员的指数,计算得到的是 0.99 或者 0.36 之类的数值。机器学习模型还可以将训练集中的数据划分为若干个组,每个组被称为一个“簇(cluster)”。

这些自动形成的簇,可能对应着不同的潜在概念,例如“篮球苗子”、“长跑苗子”。这种学习方式被称为“聚类(clusting)”,它的重要特点是在学习过程中不需要用标签对训练样本进行标注。也就是说,学习过程能够根据现有训练集自动完成分类(聚类)。

根据训练数据是否有标签,我们可以将学习划分为监督学习和无监督学习。

前面介绍的 K近邻、支持向量机都是监督学习,提供有标签的数据给算法学习,然后对数据分类。而聚类是无监督学习,事先并不知道分类标签是什么,直接对数据分类。

举一个简单的例子,有 100 粒豆子,如果已知其中 40 粒为绿豆,40 粒为大豆,根据上述标签,将剩下的 20 粒豆子划分为绿豆和大豆则是监督学习。

针对上述问题可以使用 K 近邻算法,计算当前待分类豆子的大小,并找出距离其最近的 5 粒豆子的大小,判断这 5 粒豆子中哪种豆子最多,将当前豆子判定为数量最多的那一类豆子类别。

同样,有 100 粒豆子,我们仅仅知道这些豆子里有两个不同的品种,但并不知道到底是什么品种。此时,可以根据豆子的大小、颜色属性,或者根据大小和颜色的组合属性,将其划分为两个类型。在此过程中,我们没有使用已知标签,也同样完成了分类,此时的分类是一种无监督学习。

聚类是一种无监督学习,它能够将具有相似属性的对象划分到同一个集合(簇)中。聚类方法能够应用于所有对象,簇内的对象越相似,聚类算法的效果越好。

理论基础

本节首先用一个实例来介绍 K 均值聚类的基本原理,在此基础上介绍 K 均值聚类的基本步骤,最后介绍一个二维空间下的 K 均值聚类示例。

分豆子

假设有 6 粒豆子混在一起,我们可以在不知道这些豆子类别的情况下,将它们按照直径大小划分为两类。

经过测量,以 mm(毫米)为单位,这些豆子的直径大小分别为 1、2、3、10、20、30。下面将它们标记为 A、B、C、D、E、F,并进行分类操作。

第 1 步:随机选取两粒参考豆子。例如,随机将直径为 1mm 的豆子 A 和直径为 2 mm 的豆子 B 作为分类参考豆子。

第 2 步:计算每粒豆子的直径距离豆子 A 和豆子 B 的距离。距离哪个豆子更近,就将新豆子划分在哪个豆子所在的组。使用直径作为距离计算依据时,计算结果如表 22-1 所示。

在这里插入图片描述
在本步骤结束时,6 粒豆子被划分为以下两组。

  • 第 1 组:只有豆子 A。
  • 第 2 组:豆子 B、C、D、E、F,共 5 粒豆子。

第 3 步:分别计算第 1 组豆子和第 2 组豆子的直径平均值。然后,将各个豆子按照与直径
平均值的距离大小分组。

  • 计算第 1 组豆子的平均值 AV1 = 1mm。
  • 计算第 2 组豆子的平均值 AV2 = (2+3+10+20+30)/5 = 13mm。

得到上述平均值以后,对所有的豆子再次分组:

  • 将平均值 AV1 所在的组,标记为 AV1 组。
  • 将平均值 AV2 所在的组,标记为 AV2 组。

计算各粒豆子距离平均值 AV1 和 AV2 的距离,并确定分组,如表 22-2 所示。

在这里插入图片描述
距离平均值 AV1 更近的豆子,就被划分为 AV1 组;距离平均值 AV2 更近的豆子,就被划分为 AV2 组。现在,6 粒豆子的分组情况为:

  • AV1 组:豆子 A、豆子 B、豆子 C。
  • AV2 组:豆子 D、豆子 E、豆子 F。

第4 步:重复第 3 步,直到分组稳定不再发生变化,即可认为分组完成。
在本例中,重新计算 AV1 组的平均值 AV41、AV2 组的平均值 AV42,依次计算每个豆子与平均值 AV41 和 AV42 的距离,并根据该距离重新划分分组。按照与第 3 步相同的方法,重新计算平均值并分组后,6 粒豆子的分组情况为:

  • AV41 组:豆子 A、豆子 B、豆子 C。
  • AV42 组:豆子 D、豆子 E、豆子 F。

与上一次的分组相比,并未发生变化,我们就认为分组完成了
我们将直径较小的那一组称为“小豆子”,直径较大的那一组称为“大豆子”。

当然,本例是比较极端的例子,数据很快就实现了收敛,在实际处理中可能需要进行多轮的迭代才能实现数据的收敛,分类不再发生变化。

K 均值聚类函数

OpenCV 提供了函数 cv2.kmeans()来实现 K 均值聚类。该函数的语法格式为:

retval, bestLabels, centers=cv2.kmeans(data, K, bestLabels, criteria,
attempts, flags)

式中各个参数的含义为:

  • data:输入的待处理数据集合,应该是 np.float32 类型,每个特征放在单独的一列中。

  • K:要分出的簇的个数,即分类的数目,最常见的是 K=2,表示二分类。

  • bestLabels:表示计算之后各个数据点的最终分类标签(索引)。实际调用时,参数bestLabels 的值设置为 None。

  • criteria:算法迭代的终止条件。当达到最大循环数目或者指定的精度阈值时,算法停止继续分类迭代计算。该参数由 3 个子参数构成,分别为 type、max_iter 和 eps。
    type 表示终止的类型,可以是三种情况,分别为:

    • cv2.TERM_CRITERIA_EPS:精度满足 eps 时,停止迭代。
    • cv2.TERM_CRITERIA_MAX_ITER:迭代次数超过阈值 max_iter 时,停止迭代。
    • cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER:上述两个条件中的
      任意一个满足时,停止迭代。
  • max_iter:最大迭代次数。

  • eps:精确度的阈值。

  • attempts:在具体实现时,为了获得最佳分类效果,可能需要使用不同的初始分类值进
    行多次尝试。指定 attempts 的值,可以让算法使用不同的初始值进行多次(attempts 次)
    尝试。

  • flags:表示选择初始中心点的方法,主要有以下 3 种。

    • cv2.KMEANS_RANDOM_CENTERS:随机选取中心点。
    • cv2.KMEANS_PP_CENTERS:基于中心化算法选取中心点。
    • cv2.KMEANS_USE_INITIAL_LABELS:使用用户输入的数据作为第一次分类中心点;
      如果算法需要尝试多次(attempts 值大于 1 时),后续尝试都是使用随机值或者半随
      机值作为第一次分类中心点。
      返回值的含义为:
  • retval:距离值(也称密度值或紧密度),返回每个点到相应中心点距离的平方和。

  • bestLabels:各个数据点的最终分类标签(索引)。

  • centers:每个分类的中心点数据。

示例:有一堆米粒,按照长度和宽度对它们分类。

为了方便理解,假设米粒有两种,其中一种是 XM,另外一种是 DM。它们的直径不一样,XM 的长和宽都在[0, 20]内,DM 的长和宽都在[40, 60]内。使用随机数模拟两种米粒的长度和宽度,并使用函数 cv2.kmeans()对它们分类。
根据题目要求,主要步骤如下:

(1)随机生成两组米粒的数据,并将它们转换为函数 cv2.kmeans()可以处理的形式。
(2)设置函数 cv2.kmeans()的参数形式。
(3)调用函数 cv2.kmeans()。
(4)根据函数 cv2.kmeans()的返回值,确定分类结果。
(5)绘制经过分类的数据及中心点,观察分类结果。

代码如下:

import numpy as np
import cv2
from matplotlib import pyplot as plt
# 随机生成两组数值
# xiaomi ,长和宽都在[0,20]
xiaomi = np.random.randint(0,20,(30,2))
#dami ,长和宽的大小都在[40,60]dami = np.random.randint(40,60,(30,2))
# 组合数据
MI = np.vstack((xiaomi,dami))
# 转换为 float32 类型
MI = np.float32(MI)
# 调用 kmeans 模块
# 设置参数 criteria 值
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
# 调用 kmeans 函数
ret,label,center=cv2.kmeans(MI,2,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
'''
#打印返回值
print(ret)
print(label)
print(center)
'''
# 根据 kmeans 的处理结果,将数据分类,分为 XM 和 DM 两大类
XM = MI[label.ravel()==0]
DM = MI[label.ravel()==1]
# 绘制分类结果数据及中心点
plt.scatter(XM[:,0],XM[:,1],c = 'g', marker = 's')
plt.scatter(DM[:,0],DM[:,1],c = 'r', marker = 'o')
plt.scatter(center[0,0],center[0,1],s = 200,c = 'b', marker = 'o')
plt.scatter(center[1,0],center[1,1],s = 200,c = 'b', marker = 's')
plt.xlabel('Height'),plt.ylabel('Width')
plt.show()

在这里插入图片描述
右上方的小方块是标签为“0”的数据点,左下方的圆点是标签为“1”的
数据点。右上方稍大的圆点是标签“0”的数据组的中心点;左下方稍大的方块是标签为“1”的数据组的中心点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/93522.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++学习手札】一文带你初识C++继承

食用指南:本文在有C基础的情况下食用更佳 🍀本文前置知识: C类 ♈️今日夜电波:napori—Vaundy 1:21 ━━━━━━️💟──────── 3:23 …

英语学习 Eudic欧路词典 for Mac

欧路词典是一款功能强大的英语学习工具,其多语种支持、海量词库、强大的翻译功能、听力训练和生词本和笔记等特点,使得用户可以方便地进行英语学习和提高英语水平,适用于各种英语学习人员和文化交流人员等不同人群。 1 、全面支持最新Retina…

《cpolar内网穿透》外网SSH远程连接linux(CentOS)服务器

本次教程我们来实现如何在外公网环境下,SSH远程连接家里/公司的Linux CentOS服务器,无需公网IP,也不需要设置路由器。 视频教程 [video(video-jrpesBrv-1680147672481)(type-csdn)(url-CSDN直播https://live-file.csdnimg.cn/release/live/…

[oneAPI] 手写数字识别-LSTM

[oneAPI] 手写数字识别-LSTM 手写数字识别参数与包加载数据模型训练过程结果 oneAPI 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolk…

5G无人露天矿山解决方案

1、5G无人露天矿山解决方案背景 ①2010.10,国家安监总局《金属非金属地下矿山安全避险“六大系统”安装使用和监督检查暂行规定》 ②2016.03,国家发改委《能源技术革命创新行动计划(2016-2030)》,2025 年重点煤矿区采…

6.1 安全漏洞与网络攻击

数据参考:CISP官方 目录 安全漏洞及产生原因信息收集与分析网络攻击实施后门设置与痕迹清除 一、安全漏洞及产生原因 什么是安全漏洞 安全漏洞也称脆弱性,是计算机系统存在的缺陷 漏洞的形式 安全漏洞以不同形式存在漏洞数量逐年递增 漏洞产生的…

强化学习:用Python训练一个简单的机器人

一、介绍 强化学习(RL)是一个令人兴奋的研究领域,它使机器能够通过与环境的交互来学习。在这篇博客中,我们将深入到RL的世界,并探索如何使用Python训练一个简单的机器人。在本文结束时,您将对 RL 概念有基本…

Qt 杂项(Qwt、样式等)

Qt隐藏窗口边框 this->setWindowFlags(Qt::FramelessWindowHint);Qt模态框 this->setWindowModality(Qt::ApplicationModal);QLable隐藏border 代码中设置 lable->setStyleSheet("border:0px");或者UI中直接设置样式:“border:0px” Qwt开源…

什么是DNS服务器的层次化和分布式?

DNS (Domain Name System) 的结构是层次化的,意味着它是由多个级别的服务器组成,每个级别负责不同的部分。以下是 DNS 结构的层次: 根域服务器(Root Servers): 这是 DNS 层次结构的最高级别。全球有13组根域…

chrome解决http自动跳转https问题

1.地址栏输入: chrome://net-internals/#hsts 2.找到底部Delete domain security policies一栏,输入想处理的域名,点击delete。 例如我之前可能访问过这个网址,https://test.apac.com:9090/login 但是后面我去掉了https协议&…

Patch SCN一键解决ORA-600 2662故障---惜分飞

客户强制重启库之后,数据库启动报ORA-600 2037,ORA-745 kcbs_reset_pool/kcbzre1等错误 Wed Aug 09 13:25:38 2023 alter database mount exclusive Successful mount of redo thread 1, with mount id 1672229586 Database mounted in Exclusive Mode Lost write protection d…

ArcGIS 利用cartogram插件制作变形地图

成果图 注:本图数据并不完全对,只做为测试用例 操作 首先需要下载一个插件cartogram 下载地址在这里 https://www.arcgis.com/home/item.html?idd348614c97264ae19b0311019a5f2276 下载完毕之后解压将Cartograms\HelpFiles下的所有文件复制到ArcGIS…

NFT Insider#102:The Sandbox重新上线LAND桥接服务,YGG加入Base生态

引言:NFT Insider由NFT收藏组织WHALE Members(https://twitter.com/WHALEMembers)、BeepCrypto(https://twitter.com/beep_crypto)联合出品,浓缩每周NFT新闻,为大家带来关于NFT最全面、最新鲜、最有价值的讯息。每期周…

【npm run dev报错】无法加载文件 C:\Program Files\nodejs\npm.ps1,因为在此系统上禁止运行脚本。

1.winX键,使用管理员身份运行power shell 2.输入命令:set-executionpolicy remotesigned 3.输入”Y“,回车,问题解决。 文章来源:无法加载文件 C:\Program Files\nodejs\npm.ps1,因为在此系统上禁止运行脚本。 - 前…

java之juc二

JMM 请你谈谈对Volatile的理解 Volatile是jvm提供的轻量级的同步机制(和synchronized差不多,但是没有synchronized那么强大) 保证可见性不保证原子性禁止指令重排 什么是JMM JMM:java内存模型,不存在的东西&#…

Linux 修改信号的响应方式

修改信号的响应方式 1.signal()方法介绍: 修改信号的响应方式要用到方法signal()。需要引用头文件signal.h。signal()的原型: typedef重命名了一个函数指针的类型,这个指针的类型为指向一个参数为int返回值为void的函数的指针。这个函数指针…

小白到运维工程师自学之路 第七十三集 (kubernetes应用部署)

一、安装部署 1、以Deployment YAML方式创建Nginx服务 这个yaml文件在网上可以下载 cat nginx-deployment.yaml apiVersion: apps/v1 #apiVersion是当前配置格式的版本 kind: Deployment #kind是要创建的资源类型,这里是Deploymnet metadata: #metadata是该资源…

Max Compute 操作记录

编译 max compute-spark git clone https://github.com/aliyun/MaxCompute-Spark cd spark-3.x mvn clean package -DskipTests在 target 目录下生成 以下两个文件。 spark-examples_2.12-1.0.0-SNAPSHOT-shaded.jar spark-examples_2.12-1.0.0-SNAPSHOT.jar2. DataWorks 上传…

Genoss GPT简介:使用 Genoss 模型网关实现多个LLM模型的快速切换与集成

一、前言 生成式人工智能领域的发展继续加速,大型语言模型 (LLM) 的用途范围不断扩大。这些用途跨越不同的领域,包括个人助理、文档检索以及图像和文本生成。ChatGPT 等突破性应用程序为公司进入该领域并开始使用这项技术进行构建铺平了道路。 大公司正…

【设计模式】抽象工厂模式

抽象工厂模式(Abstract Factory Pattern)是围绕一个超级工厂创建其他工厂。该超级工厂又称为其他工厂的工厂。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。 在抽象工厂模式中,接口是负责创建一个相关对象…