GAN:对抗生成网络,前向传播和后巷传播的区别

目录

GAN:对抗生成网络

损失函数

判别器开始波动很大,先调整判别器

 生成样本和真实样本的统一:真假难辨​编辑

 文字专图片​编辑

 头像转表情包​编辑

 头像转3D​编辑

后向传播

1. 前向传播(forward)

2. 反向传播(backward):得到权重参数公式,寻找优路径

反向传播的四个基本方程

链式法则误差求和

 梯度下降权重参数更新​编辑


GAN:对抗生成网络

 

 

 

损失函数

 

判别器开始波动很大,先调整判别器

 生成样本和真实样本的统一:真假难辨

 

 

 图像数据集生成

 

 文字专图片

 头像转表情包

 头像转3D

 贝叶斯:后验

 

 

 

后向传播

 

 


前向传播:通过输入层输入,一路向前,通过输出层输出的一个结果。如图指的是1 、 x1、x2、xn、与权重(weights)相乘,并且加上偏置值b0,然后进行总的求和,同时通过激活函数激活之后算出结果。这个过程就是前向传播
反向传播:通过输出反向更新权重的过程。具体的说输出位置会产生一个模型的输出,通过这个输出以及原数据计算一个差值。将前向计算过程反过来计算。通过差值和学习率更新权重。

1. 前向传播(forward)

简单理解就是将上一层的输出作为下一层的输入,并计算下一层的输出,一直到运算到输出层为止。接下来我们用数学公式描述一下:

权重

偏置

设 wjkl 为 l−1 层第 k 个神经元到第 l 层第 j 个神经元的weight, bjl 为第 l 层第 j 个神经元的bias, ajl 为第第 l 层第 j 个神经元的激活值(激活函数的输出,保证模型的非线性)。

对于Layer 2的输出 a1(2) ,a2(2),a3(2),

a1(2)=σ(z1(2))=σ(w11(2)x1+w12(2)x2+w13(2)x3+b1(2))

a2(2)=σ(z2(2))=σ(w21(2)x1+w22(2)x2+w23(2)x3+b2(2))

a3(2)=σ(z3(2))=σ(w31(2)x1+w32(2)x2+w33(2)x3+b3(2))

对于Layer 3的输出a1(3),

a1(3)=σ(z1(3))=σ(w11(3)a1(2)+w12(3)a2(2)+w13(3)a3(2)+b1(3))

a2(3)=σ(z2(3))=σ(w21(3)a1(2)+w22(3)a2(2)+w23(3)a3(2)+b2(3))

从上面可以看出,使用代数法一个个的表示输出比较复杂,而如果使用矩阵法则比较的简洁。将上面的例子一般化,并写成矩阵乘法的形式,

z(l)=W(l)a(l−1)+b(l)

a(l)=σ(z(l))

其中 σ 为 激活函数,如Sigmoid,ReLU,PReLU等。

2. 反向传播(backward):得到权重参数公式,寻找优路径

实际上,反向传播仅指用于计算梯度的方法而另一种算法,例如随机梯度下降法,才是使用该梯度来进行学习。原则上反向传播可以计算任何函数的到导数

在了解反向传播算法之前,我们先简单介绍一下链式法则:

微积分中的链式法则(为了不与概率中的链式法则相混淆)用于计复合函数的导数。反向传播是一种计算链式法则的算法,使用高效的特定运输顺序。

设 x 是实数, f 和 g 是从实数映射到实数的函数。假设 y=g(x) 并且 z=f(g(x))=f(y) 。那么链式法则就是: dzdx=dzdydydx 。

反向传播算法的核心是代价函数 C 对网络中参数(各层的权重 W 和偏置 b )的偏导表达式 ∂C∂W 和∂C∂b。这些表达式描述了代价函数值C随权重W或偏置b变化而变化的程度。BP算法的简单理解:如果当前代价函数值距离预期值较远,那么我们通过调整权重W或偏置b的值使新的代价函数值更接近预期值(和预期值相差越大,则权重W或偏置b调整的幅度就越大)。一直重复该过程,直到最终的代价函数值在误差范围内,则算法停止。

BP算法可以告诉我们神经网络在每次迭代中,网络的参数是如何变化的,理解这个过程对于我们分析网络性能或优化过程是非常有帮助的,所以还是尽可能搞透这个点。

反向传播过程中要计算偏导表达式 ∂C/∂W 和∂C/∂b,我们先对代价函数做两个假设,以二次损失函数为例:

其中 n 为训练样本 x 的总数, y=y(x) 为期望的输出,即ground truth, L 为网络的层数, aL(x) 为网络的输出向量。

假设1:总的代价函数可以表示为单个样本的代价函数之和的平均:

 这个假设的意义在于,因为反向传播过程中我们只能计算单个训练样本的∂Cx/∂Wx 和∂C/∂b,在这个假设下,我们可以通过计算所有样本的平均来得到总体的∂C/∂W 和∂C/∂b。

假设2:代价函数可以表达为网络输出的函数 Loss=C(aL) ,比如单个样本 x 的二次代价函数可以写为:

反向传播的四个基本方程

权重W或偏置b的改变如何影响代价函数 C 是理解反向传播的关键。最终,这意味着我们需要计算出每个的∂C/∂Wjkl 和∂C/∂bjkl,在讨论基本方程之前,我们引入误差 δ 的概念,δjl表示第 l 层第 j 个神经元的误差

如上图所示,假设有个小恶魔在第 l 层第 j 个神经元捣蛋,他让这个神经元的权重输出变化了 Δzjl ,那么这个神经元的激活输出为 δ(zjl+Δzjl) ,然后这个误差向后逐层传播下去,导致最终的代价函数变化了 ∂C/∂zjlΔzjl 。现在这个小恶魔改过自新,它想帮助我们尽可能减小代价函数的值(使网络输出更符合预期)。假设 ∂C∂zjl 一开始是个很大的正值或者负值,小恶魔通过选择一个和 ∂C/∂zjl 方向相反的Δzjl使代价函数更小(这就是我们熟知的梯度下降法)。随着迭代的进行, ∂C/∂zjl 会逐渐趋向于0,那么Δzjl对于代价函数的改进效果就微乎其微了,这时小恶魔就一脸骄傲的告诉你:“俺已经找到了最优解了(局部最优)”。这启发我们可以用 ∂C/∂zjl 来衡量神经元的误差: δjl=∂C∂zjl 。

下面就来看看四个基本方程是怎么来的。

1. 输出层的误差方程

果上面的东西你看明白了,这个方程应该不难理解,等式右边第一项 ∂C∂ajL 衡量了代价函数随网络最终输出的变化快慢,而第二项 σ(1)(zjL) 则衡量了激活函数输出随 zjL 的变化快慢。当激活函数饱和,即 σ(1)(zjL)≈0 时,无论∂C∂ajL多大,最终 δjL≈0 ,输出神经元进入饱和区,停止学习。

方程中两项都很容易计算,如果代价函数为二次代价函数:

可以得到:

同理,对激活函数 σ(z) 求 zjL 的偏导即可求得 σ(1)(zjL) ,将它重写为矩阵形式:

⊙ 为Hadamard积,即矩阵的点积。

链式法则误差求和

 梯度下降权重参数更新

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/98396.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

windows权限维持—黄金白银票据隐藏用户远控RustDeskGotoHttp

windows权限维持—黄金白银票据&隐藏用户&远控&RustDesk&GotoHttp 1. 前置1.1. 初始问题1.1.1. 解决办法 2. 隐藏用户2.1. 工具原理2.2. 案例操作2.2.1. 单机添加用户2.2.1.1. 工具添加用户2.2.1.2. 工具查看隐藏用户2.2.1.3. 本地查看隐藏用户 2.2.2. 域内添加…

什么是Eureka?以及Eureka注册服务的搭建

导包 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 htt…

WPF入门到精通:2.WPF常用控件及布局

WPF&#xff08;Windows Presentation Foundation&#xff09;是一个用于构建 Windows 应用程序的框架&#xff0c;它提供了丰富的控件和布局方式&#xff0c;帮助开发者快速构建出现代化的应用程序。 WPF常用控件 Button 控件 WPF 中最常用的控件之一。它由一个文本标签和一个…

nginx反向代理、负载均衡

修改nginx.conf的配置 upstream nginx_boot{# 30s内检查心跳发送两次包&#xff0c;未回复就代表该机器宕机&#xff0c;请求分发权重比为1:2server 192.168.87.143 weight100 max_fails2 fail_timeout30s; server 192.168.87.1 weight200 max_fails2 fail_timeout30s;# 这里的…

菜鸟Vue教程 - 实现带国际化的注册登陆页面

初接触vue的时候觉得vue好难&#xff0c;因为项目中要用到&#xff0c;就硬着头皮上&#xff0c;慢慢的发现也不难&#xff0c;无外乎画个布局&#xff0c;然后通过样式调整界面。在通过属性和方法跟js交互。js就和我们写的java代码差不多了&#xff0c;复杂一点的就是引用这种…

G0第26章:微服务概述与gRPCprotocol buffers

Go微服务与云原生 1、微服务架构介绍 单体架构&#xff08;电商&#xff09; SOA架构&#xff08;电商&#xff09; 微服务架构&#xff08;电商&#xff09; 优势 挑战 拆分 发展史 第一代:基于RPC的传统服务架构 第二代:Service Mesh(istio) 微服务架构分层 核心组件 Summar…

css学习3(三种样式表与样式控制优先级)

1、外部样式表&#xff1a;当样式需要应用于很多页面时&#xff0c;外部样式表将是理想的选择。在使用外部样式表的情况下&#xff0c;你可以通过改变一个文件来改变整个站点的外观。每个页面使用 <link> 标签链接到样式表&#xff0c;也要放到<head>中。 2、外部…

快速排序 | C++|时间空间复杂度

1.概念 快速排序(QuickSort)的基本思想是:通过一趟排序将待排记录分割成独立的两部分&#xff0c;其中一部分记录的关键字均比另一部分记录的关键字小&#xff0c;则可分别对这两部分记录继续进行排序&#xff0c;以达到整个序列有序的目的。 2.算法思想描述 1.进行一次划分&…

开源远程控制硬件 BliKVM v4测试 1000公里外远程重装系统

测试准备 测试时间&#xff1a;20230818 测试硬件&#xff1a;BliKVM v4 文档 BliKVM v4是一款生产就绪、即插即用的 KVM-over-IP 设备&#xff0c;为专业用户提供了远程服务器或工作站管理的便捷解决方案。 它基于Linux并且完全开源。 借助 BliKVM&#xff0c;您可以轻松打…

人工智能大模型加速数据库存储模型发展 行列混合存储下的破局

数据存储模型 ​专栏内容&#xff1a; postgresql内核源码分析手写数据库toadb并发编程toadb开源库 个人主页&#xff1a;我的主页 座右铭&#xff1a;天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物. 概述 在数据库的发展过程中&#xff0c;关…

改善神经网络——优化算法(mini-batch、动量梯度下降法、Adam优化算法)

改善神经网络——优化算法 梯度下降Mini-batch 梯度下降&#xff08;Mini-batch Gradient Descent&#xff09;指数加权平均包含动量的梯度下降RMSprop算法Adam算法 优化算法可以使神经网络运行的更快&#xff0c;机器学习的应用是一个高度依赖经验的过程&#xff0c;伴随着大量…

【CSS动画02--卡片旋转3D】

CSS动画02--卡片旋转3D 介绍代码HTMLCSS css动画02--旋转卡片3D 介绍 当鼠标移动到中间的卡片上会有随着中间的Y轴进行360的旋转&#xff0c;以下是几张图片的介绍&#xff0c;上面是鄙人自己录得一个供大家参考的小视频&#x1f92d; 代码 HTML <!DOCTYPE html>…

【idea】社区版idea运行Tomcat

使用 Smart Tomcat插件 配置运行&#xff1a;

解决Kibana(OpenSearch)某些字段无法搜索问题

背景 最近在OpenSearch查看线上日志的时候&#xff0c;发现某个索引下有些字段无法直接在界面上筛选&#xff0c;搜索到也不高亮&#xff0c;非常的不方便&#xff0c;就像下面这样 字段左侧两个筛选按钮禁用了无法点击&#xff0c;提示 Unindexed fields can not be searched…

MapReduce介绍

目录 ​一、什么是MapReduce 二、MapReduce 的设计思想 2.1 分而治之 2.2 构建抽象模型&#xff1a;Map和Reduce 2.3 隐藏系统层细节 三、MapReduce 的框架原理 3.1 MRv1工作原理 3.1.1 MRv1架构工作原理图 3.1.1.1 流程说明 3.1.1.1.1 作业的提交 3.1.1.1.2 作业的初始化 3…

React18TS项目:配置react-css-modules,使用styleName

他的好处不说了 网上一堆文章一个能打的都没有&#xff0c; 添加开发依赖 pnpm add -D dr.pogodin/babel-plugin-react-css-modules types/react-css-modules Babel Plugin "React CSS Modules" | Dr. Pogodin Studio 看dr.pogodin/babel-plugin-react-css-mo…

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路

完整代码&#xff1a; import torch import torchvision from PIL import Image from torch import nnimage_path "../imgs/dog.png" image Image.open(image_path) print(image)# 因为png格式是四个通道&#xff0c;除了RGB三通道外&#xff0c;还有一个透明度通…

机器人制作开源方案 | 送餐机器人

作者&#xff1a;赖志彩、曹柳洲、王恩开、李雪儿、杨玉凯 单位&#xff1a;华北科技学院 指导老师&#xff1a;张伟杰、罗建国 一、作品简介 1. 场景调研 1.1项目目的 近年来&#xff0c;全国多地疫情频发&#xff0c;且其传染性极高&#xff0c;食品接触是传播途径之一。…

树莓派第一讲:入门那些事(系统烧录、外设连接)

目录 基本了解&#xff1a; 系统烧录&#xff1a; 连接外设&#xff1a; 基本了解&#xff1a; 树莓派4B是一款单板计算机&#xff0c;采用ARM架构处理器&#xff0c;配备4GB内存、Gigabit以太网口、多个USB接口、HDMI输出接口等。它具备1.5Ghz运行的64位四核处理器&#x…

Ribbon负载均衡

Ribbon与Eureka的关系 Eureka的服务拉取与负载均衡都是由Ribbon来实现的。 当服务发送http://userservice/user/xxxhtt://userservice/user/xxx请求时&#xff0c;是无法到达userservice服务的&#xff0c;会通过Ribbon会把这个请求拦截下来&#xff0c;通过Eureka-server转换…