【小沐学NLP】Python进行统计假设检验

文章目录

  • 1、简介
    • 1.1 假设检验的定义
    • 1.2 假设检验的类型
    • 1.3 假设检验的基本步骤
  • 2、测试数据
    • 2.1 sklearn
    • 2.2 seaborn
  • 3、正态分布检验
    • 3.1 直方图判断
    • 3.2 KS检验(scipy.stats.kstest)
    • 3.3 Shapiro-Wilk test(scipy.stats.shapiro)
    • 3.4 Anderson-Darling test(scipy.stats.anderson)
    • 3.5 D’Agostino and Pearson’s test (scipy.stats.normaltest)
  • 4、假设检验
    • 4.1 z 检验
    • 4.2 t 检验
  • 5、置信区间
  • 结语

1、简介

1.1 假设检验的定义

  • 什么是假设检验?
    统计学有两个推断统计方法,一个是参数估计,另一个是假设检验。

  • 参数估计用样本统计量来推断总体参数的方法
    假设检验是基于某一假设的前提下,同样利用样本统计量去检验这个假设是否成立。

1.2 假设检验的类型

假设检验的3种类型:
1、单样本:检验单个样本的平均值是否等于目标值。
2、相关样本检验的缺点:残留效应。第二次测量结果会受到第一次处理措施的影响。
3、独立双样本检验:没有残留效应,因为可以对一个组实施一种处理措施,并对另一组实施另一种措施。但是需要更多的实验数据,因为我们需要随机的选择两组实验数据来接受两种处理措施。

在这里插入图片描述

1.3 假设检验的基本步骤

假设检验是一种统计推断方法,用于判断一个统计样本中的观察结果是否与预期的理论分布相符。下面是假设检验的基本步骤:

  • (1)建立原假设(H0)和备择假设(H1):原假设(H0)是我们想要进行假设检验的观察结果的预期结果。 备择假设(H1)是与原假设相反的假设,即观察结果与预期结果不符。

  • (2)选择合适的统计检验方法:根据问题的性质和数据类型,选择适当的统计检验方法。例如,t检验适用于比较样本均值,卡方检验适用于比较分类变量等。

  • (3)收集和整理数据:收集和整理与问题相关的样本数据,确保数据的质量和完整性。

  • (4)计算统计量:使用所选择的统计检验方法,计算适当的统计量。例如,t检验中的t值,卡方检验中的卡方值等。

  • (5)获取p值:根据计算的统计量和观察样本数据,计算得到一个p值(或显著性水平)。p值表示给定观察结果出现的概率,如果p值小于预设的显著性水平(通常为0.05),则拒绝原假设。

  • (6)进行假设判断:根据得到的p值和预设显著性水平,做出假设判断:
    如果p值小于显著性水平,拒绝原假设,接受备择假设,认为观察结果与预期结果不一致。
    如果p值大于或等于显著性水平,接受原假设,认为观察结果与预期结果一致。

  • (7)解释结果: 根据假设判断的结果,解释分析的结果,得出结论。
    在这里插入图片描述

假设检验的步骤:
1、问题是什么?(零假设,备选假设)
2、证据是什么?(零假设成立时,得到样本平均值的概率p)
3、判断标准是什么?(显著水平alpha)
4、做出结论?(p<=alpha ,零假设不太可能发生,拒绝零假设)得到。

2、测试数据

  • Toy datasets
    • load_iris(*[, return_X_y, as_frame]): Load and return the iris dataset (classification).
    • load_diabetes(*[, return_X_y, as_frame, scaled]): Load and return the diabetes dataset (regression).
    • load_digits(*[, n_class, return_X_y, as_frame]): Load and return the digits dataset (classification).
    • load_linnerud(*[, return_X_y, as_frame]): Load and return the physical exercise Linnerud dataset.
    • load_wine(*[, return_X_y, as_frame]):Load and return the wine dataset (classification).
    • load_breast_cancer(*[, return_X_y, as_frame]):Load and return the breast cancer wisconsin dataset (classification).
  • Real world datasets
  • Generated datasets
  • Loading other datasets

2.1 sklearn

鸢尾花(Iris plants dataset)

https://scikit-learn.org/stable/datasets/toy_dataset.html#iris-dataset

Iris数据集在模式识别研究领域应该是最知名的数据集了,有很多文章都用到这个数据集。这个数据集里一共包括150行记录,其中前四列为花萼长度,花萼宽度,花瓣长度,花瓣宽度等4个用于识别鸢尾花的属性,第5列为鸢尾花的类别(包括Setosa,Versicolour,Virginica三类)。也即通过判定花萼长度,花萼宽度,花瓣长度,花瓣宽度的尺寸大小来识别鸢尾花的类别。
在这里插入图片描述

# pip install scikit-learn
from sklearn.datasets import load_irisiris = load_iris()
data = iris.data
target= iris.target
print(data)
print(target)

这里data为训练所需的数据集,target为数据集对应的分类标签,属于监督学习。
在这里插入图片描述

在这里插入图片描述

from sklearn.datasets import load_irisiris = load_iris()
data = iris.data
target= iris.target
# print(data)
# print(target)
# print('DESCR: ', iris['DESCR'])
print('data_module: ', iris['data_module'])
print('filename: ', iris['filename'])
print('frame: ', iris['frame'])
print('feature_names: ', iris['feature_names'])
print('target_names: ', iris['target_names'])
print('target: ', iris['target'])

在这里插入图片描述

data数据集中的数据一共有4个属性,分别为:

'sepal length (cm)', 
'sepal width (cm)', 
'petal length (cm)', 
'petal width (cm)'
  • pandas.DataFrame.describe()
    对数值型数据进行描述,包括个数、均值、标准差、最小值、分分位数和最大值。
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from scipy import stats
import statsmodels.stats.weightstats as sw# 导入IRIS数据集
iris = load_iris()
# print(iris.data)df_iris=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])
# print(df_iris['sepal_width'])
print(df_iris.describe())

在这里插入图片描述

  • 极差
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from scipy import stats
import statsmodels.stats.weightstats as sw# 导入IRIS数据集
iris = load_iris()
# print(iris.data)df_iris=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])print(df_iris['sepal_length'].max() - df_iris['sepal_length'].min())
# or
print( np.ptp(df_iris['sepal_length']) )

在这里插入图片描述

  • 均值
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from scipy import stats
import statsmodels.stats.weightstats as sw# 导入IRIS数据集
iris = load_iris()
df_iris=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])result = df_iris['sepal_length'].mean()
print(result)result = df_iris.mean(axis=0) # 默认axis=0统计列的数据,axis=1是行
print(result)

在这里插入图片描述

  • 中位数
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from scipy import stats
import statsmodels.stats.weightstats as sw# 导入IRIS数据集
iris = load_iris()
df_iris=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])result = df_iris.median() # 默认描述所有数值型字段,也可以指定字段
print(result)

在这里插入图片描述

  • 分位数
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from scipy import stats
import statsmodels.stats.weightstats as sw# 导入IRIS数据集
iris = load_iris()
df_iris=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])ret = df_iris.quantile(q=0.75) # q参数用于指定分位位置(0<=q<=1)
print(ret)

在这里插入图片描述

  • 方差、标准差
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from scipy import stats
import statsmodels.stats.weightstats as sw# 导入IRIS数据集
iris = load_iris()
df_iris=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])print("var: ", df_iris['sepal_length'].var())
print("std: ", df_iris['sepal_length'].std())

在这里插入图片描述

2.2 seaborn

  • 安装seaborn
pip install seaborn -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
  • 下载数据文件
    https://gitcode.net/mirrors/mwaskom/seaborn-data?utm_source=csdn_github_accelerator
    https://labfile.oss.aliyuncs.com/courses/2616/seaborn-data.zip
import seaborn as sns
df = sns.load_dataset('flights')

这样直接执行的话,会报错。无法联网下载数据集。从国内镜像网站下载 seaborn 数据集到本地后解压。
从本地加载数据,执行如下代码:

import seaborn as snsdf = sns.load_dataset('flights', data_home="C:/Users/tomcat/Desktop/seaborn-data-master")
print(df.head())

在这里插入图片描述

  • 绘制图形
import seaborn as snsdf = sns.load_dataset("penguins", data_home="C:/Users/tomcat/Desktop/seaborn-data-master")
sns.pairplot(df, hue="species")
import matplotlib.pyplot as plt
plt.show()

在这里插入图片描述

import seaborn as snssns.set(style="ticks", color_codes=True)
df_iris = sns.load_dataset("iris", data_home="C:/Users/tomcat/Desktop/seaborn-data-master")
g = sns.pairplot(df_iris)import matplotlib.pyplot as plt
plt.show()

在这里插入图片描述

3、正态分布检验

通过样本数据来判断总体是否服从正态分布的检验称为正态性检验。正态分布是很多连续型数据比较分析的大前提,比如t检验、方差分析、相关分析以及线性回归等,均要求数据服从正态分布或近似正态分布。

在统计学中,正态检验主要用于检验一个数据集是否服从正态分布。常用的t检验、方差分析等参数检验都有一个共同的前提条件:样本数据必须服从正态分布,即样本数据必须来源于一个正态分布的总体,若样本数据不服从正态分布,就不能用以上参数检验对数据进行分析,而应该使用非参数检验(如卡方检验、置换检验等)。因此在对数据进行统计分析之前,第一步就需要对数据进行正态性检验,以检验该数据来自正态分布总体的概率有多大,再选择对应的参数或非参数检验方法进行分析。

https://jse.amstat.org/v4n2/datasets.shoemaker.html

3.1 直方图判断

通过直方图初步判断样本数据是否符合正态分布。

# pip install scikit-learn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris# 导入IRIS数据集
iris = load_iris()
iris_data=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])fig = plt.figure(figsize = (10,6))
ax2 = fig.add_subplot(1,1,1)
iris_data.hist(bins=50,ax = ax2)
iris_data.plot(kind = 'kde', secondary_y=True,ax = ax2)
plt.grid()
plt.show()

在这里插入图片描述

3.2 KS检验(scipy.stats.kstest)

Kolmogorov–Smirnov test (K-S test) 是比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布的检验方法。以样本数据的累计频数分布与特定的理论分布比较(比如正态分布),如果两者之间差距小,则推论样本分布取自某特定分布。

kstest 是一个很强大的检验模块,除了正态性检验,还能检验 scipy.stats 中的其他数据分布类型,仅适用于连续分布的检验,

原假设:数据符合正态分布
方法:scipy.stats.kstest (rvs, cdf, args = ( ), N = 20, alternative =‘two-sided’, mode =‘approx’)
参数:rvs - 待检验数据,可以是字符串、数组;cdf - 需要设置的检验,这里设置为 norm,也就是正态性检验;alternative - 设置单双尾检验,默认为 two-sided
返回:W - 统计数;p-value - p值

# pip install scikit-learn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from scipy import stats# 导入IRIS数据集
iris = load_iris()
iris_data=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])# data = pd.read_table(r'D:\normal_test\data.txt', encoding='utf-8',names = ['Temperature'])
# df = pd.DataFrame(data, columns =['Temperature'])u = iris_data['sepal_length'].mean()  # 计算均值
std = iris_data['sepal_length'].std()  # 计算标准差
# 当p值大于0.05,说明待检验的数据符合为正态分布
result = stats.kstest(iris_data['sepal_length'], 'norm', (u, std))
print(result)

KstestResult(statistic=0.08865361377316228, pvalue=0.17813737848592026, statistic_location=5.1, statistic_sign=1)

从输出结果来看pvalue为0.17813737848592026,大于0.05,因此可以接受体温符合正态分布的假设。

3.3 Shapiro-Wilk test(scipy.stats.shapiro)

W检验

方法:scipy.stats.shapiro(x)
参数:x - 待检验数据
返回:W - 统计数;p-value - p值
# pip install scikit-learn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from scipy import stats# 导入IRIS数据集
iris = load_iris()
iris_data=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])res = stats.shapiro(iris_data['sepal_length'])
print(res)
res = stats.shapiro(iris_data['sepal_width'])
print(res)
res = stats.shapiro(iris_data['petal_legth'])
print(res)
res = stats.shapiro(iris_data['petal_width'])
print(res)

在这里插入图片描述

3.4 Anderson-Darling test(scipy.stats.anderson)

该方法是由 scipy.stats.kstest 改进而来的,可以做正态分布、指数分布、Logistic 分布、Gumbel 分布等多种分布检验。默认参数为 norm,即正态性检验。

# pip install scikit-learn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from scipy import stats# 导入IRIS数据集
iris = load_iris()
iris_data=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])res = stats.anderson(iris_data['sepal_length'], dist='norm')
print(res)
res = stats.anderson(iris_data['sepal_width'], dist='norm')
print(res)
res = stats.anderson(iris_data['petal_legth'], dist='norm')
print(res)
res = stats.anderson(iris_data['petal_width'], dist='norm')
print(res)

在这里插入图片描述

3.5 D’Agostino and Pearson’s test (scipy.stats.normaltest)

方法:scipy.stats.normaltest (a, axis=0)
normaltest 也是专门做正态性检验的模块,原理是基于数据的skewness和kurtosis

scipy.stats.normaltest(a, axis=0, nan_policy=‘propagate’)

a:待检验的数据

axis:默认为0,表示在0轴上检验,即对数据的每一行做正态性检验,我们可以设置为 axis=None 来对整个数据做检验

nan_policy:当输入的数据中有空值时的处理办法。默认为 ‘propagate’,返回空值;设置为 ‘raise’ 时,抛出错误;设置为 ‘omit’ 时,在计算中忽略空值。

# pip install scikit-learn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from scipy import stats# 导入IRIS数据集
iris = load_iris()
iris_data=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])res = stats.normaltest(iris_data['sepal_length'])
print(res)
res = stats.normaltest(iris_data['sepal_width'])
print(res)
res = stats.normaltest(iris_data['petal_legth'])
print(res)
res = stats.normaltest(iris_data['petal_width'])
print(res)

在这里插入图片描述
注:p值大于显著性水平0.05,认为样本数据符合正态分布)

4、假设检验

Python 中的假设检验一般用到 scipy 或 statsmodels 包。

4.1 z 检验

对于大样本数据(样本量 ≥ \geq≥ 30),或者即使是小样本,但是知道其服从正态分布,并且知道总体分布的方差时,需要用 z 检验。在 python 中,由于 scipy 包没有 z 检验,我们只能用 statsmodels 包中的 ztest 函数。

# pip install scikit-learn
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from scipy import stats
import statsmodels.stats.weightstats as sw# 导入IRIS数据集
iris = load_iris()
# print(iris.data)
iris_data=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])
print(iris_data['sepal_width'])result = sw.ztest(iris_data['sepal_width'], value=1)
print('1: ', result)
result = sw.ztest(iris_data['sepal_width'], value=2)
print('2: ', result)
result = sw.ztest(iris_data['sepal_width'], value=3)
print('3: ', result)
result = sw.ztest(iris_data['sepal_width'], value=4)
print('4: ', result)
result = sw.ztest(iris_data['sepal_width'], value=5)
print('5: ', result)

在这里插入图片描述
条件设为该样本的均值3时,从 ztest 的运行结果可以看出,统计量值为 1.6110148544749883,而 p 值是 0.10717648482938881,在置信度 α = 0.05 时,由于 p 值大于 α,接受原假设,认为该样本的均值是 3。

# 若要检测该样本均值是否大于 3,即原假设 H0:μ ≥ 3,备选假设为:μ < 3,则我们需要在代码中增加一个参数 alternative=``smaller”
sw.ztest(arr, value=3, alternative="smaller")# 检测两个样本的均值是否相等,因为两个样本都是大样本,使用 z 检验
sw.ztest(arr, arr2, value=0)

4.2 t 检验

小样本(样本量小于30个),一般用 t 检验。对于 t 检验,可以根据样本特点,用 scipy 包中的 ttest_1sample(单样本 t检验函数),ttest_ind(两个独立样本的 t 检验),ttest_rel (两个匹配样本的 t 检验)。但这些函数得到都是双侧 t 检验的 p 值。如果是单侧检验,我们还要进行一些换算,得到单侧检验的 p 值。

# pip install scikit-learn
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from scipy import stats
import statsmodels.stats.weightstats as sw# 导入IRIS数据集
iris = load_iris()
# print(iris.data)
iris_data=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])
print(iris_data['sepal_width'])result = stats.ttest_1samp(iris_data['sepal_width'], 1)
print('1: ', result)
result = stats.ttest_1samp(iris_data['sepal_width'], 2)
print('2: ', result)
result = stats.ttest_1samp(iris_data['sepal_width'], 3)
print('3: ', result)
result = stats.ttest_1samp(iris_data['sepal_width'], 4)
print('4: ', result)
result = stats.ttest_1samp(iris_data['sepal_width'], 5)
print('5: ', result)

在这里插入图片描述
从结果可以看出,双侧检验的 p 值为 0.10929285667458065, 大于置信度 0.05,因此接受原假设,认为样本的均值是3。若是单侧检验中的左侧检验,则 p 值为 0.10929285667458065 / 2 = 0.054646428337290325,若是右侧检验,则 p 值为 1 − 0.10929285667458065 / 2 = 0.9453535716627097。

# 假设两个样本的方差不同,则独立双样本的 t 检验
st.ttest_ind(a, b, equal_var = False)# 若两个样本是匹配样本,使用函数 ttest_rel
st.ttest_rel(a, b)# 结果显示,p 值小于置信度 0.05,拒绝原假设,认为这两个匹配样本的均值不同。

5、置信区间

误差不可避免,在科学试验数据分析中,通常会在测量结果上加一个误差范围。

置信区间:一定的误差范围。如果想知道样本能在多大程度上代表总体,其实这个问题的本质是用样本估计出总体它的误差范围是多少。如果我们没有办法知道总体平均值的真实数值,我们需要给出一个误差范围来描述估计的准确程度。点估计和区间估计就是解决这个问题的。

置信水平:置信区间包含总体平均值的概率是多大。如95%的置信水平表示,在构造的置信区间内,有95%的可能性会选到一个包含总体的平均值。

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from scipy import stats
import statsmodels.stats.weightstats as sw# 导入IRIS数据集
iris = load_iris()
df_iris=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])# 用scipy计算出的是:双尾检验
# 单(1samp)样本t检验(ttest_1samp):https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_1samp.html
# 相关(related)样本t检验(ttest_rel):https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html
# 双独立(independent)样本t检验(ttest_ind):https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.htmlalpha=0.05 #判断标准(显著水平)使用alpha=5%
pop_mean=3 #总体平均值'''
ttest_1samp:单独样本t检验
返回的第1个值t是假设检验计算出的(t值),
第2个值p是双尾检验的p值
'''
t,p_two =stats.ttest_1samp(df_iris['sepal_width'],pop_mean)print('t值=',t) 
print('双尾检验的p值=',p_two)#我们这里是左尾检验。根据对称性,双尾的p值是对应单尾p值的2倍
#单尾检验的p值
p_one=p_two/2
print('单尾检验的p值=',p_one)'''
左尾判断条件:t < 0 and  p_one < 判断标准(显著水平)alpha
右尾判断条件:t > 0 and  p_one < 判断标准(显著水平)alpha
'''
#做出结论
if(t<0 and p_one < alpha): #左尾判断条件print('拒绝零假设,有统计显著')
else: print('接受零假设,没有统计显著')

在这里插入图片描述

  • stats.t.interval

计算置信区间首先要有一组数组数据,比如要计算模型准确度置信区间,通过交叉验证得到模型准确度数组,然后对数组使用以下函数:
函数参数:stats.t.interval(置信度,自由度,均值,标准误)

置信度:0.95或0.97之类的常用的置信度,自己设置。
自由度:数组的长度-1。
均值:数据的均值。
标准误:通过数据的标准差计算得到。

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from scipy import stats
import statsmodels.stats.weightstats as sw# 导入IRIS数据集
iris = load_iris()
df_iris=pd.DataFrame(iris.data,columns=['sepal_length','sepal_width','petal_legth','petal_width'])data=df_iris['sepal_width']ret = stats.t.interval(confidence=0.95, df=len(data) - 1, loc=np.mean(data), scale=stats.sem(data))
print(ret)

结语

如果您觉得该方法或代码有一点点用处,可以给作者点个赞,或打赏杯咖啡;╮( ̄▽ ̄)╭
如果您感觉方法或代码不咋地//(ㄒoㄒ)//,就在评论处留言,作者继续改进;o_O???
如果您需要相关功能的代码定制化开发,可以留言私信作者;(✿◡‿◡)
感谢各位大佬童鞋们的支持!( ´ ▽´ )ノ ( ´ ▽´)っ!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/98549.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于知识蒸馏的两阶段去雨、雪、雾算法调试记录

前言 该项目的介绍可以参考博主这篇博文&#xff1a;基于知识蒸馏的去雪、去雾、去雨算法 调试过程 该项目中inference.py可以直接使用&#xff0c;只要将student的权重文件放入即可&#xff0c;博主实验过其去噪后的结果&#xff0c;貌似是变清晰了一点。但train时的meta里的…

AMBA总线协议(3)——AHB(一)

目录 一、前言 二、什么是AHB总线 1、概述 2、一个典型的基于AHB总线的微处理器架构 3、基本的 AHB 传送特性 三、AMBA AHB总线互联 四、小结 一、前言 在之前的文章中我们初步的了解了一下AMBA总线中AHB,APB,AXI的信号线及其功能&#xff0c;从本文开始我们…

Unity VR:XR Interaction Toolkit 输入系统(Input System):获取手柄的输入

文章目录 &#x1f4d5;教程说明&#x1f4d5;Input System 和 XR Input Subsystem&#xff08;推荐 Input System&#xff09;&#x1f4d5;Input Action Asset⭐Actions Maps⭐Actions⭐Action Properties&#x1f50d;Action Type (Value, Button, Pass through) ⭐Binding …

Python学习笔记_基础篇(七)_常用模块

模块&#xff0c;用一砣代码实现了某个功能的代码集合。 类似于函数式编程和面向过程编程&#xff0c;函数式编程则完成一个功能&#xff0c;其他代码用来调用即可&#xff0c;提供了代码的重用性和代码间的耦合。而对于一个复杂的功能来&#xff0c;可能需要多个函数才能完成…

华为OD机试关于无输入截止条件的ACM输入逻辑

无输入截止条件的ACM输入 华为OD机试题中有一些题目是没有输入截止条件的,比如 华为OD机试 - 数字游戏(Java & JS & Python)_伏城之外的博客-CSDN博客 从输入描述来看,每组有两行输入,但是并没有告诉我们具体有几组? 那么输入该如何截止呢? 此时,有两种输入…

【旅游度假】Axure酒店在线预订APP原型图 旅游度假子模块原型模板

作品概况 页面数量&#xff1a;共 10 页 兼容软件&#xff1a;Axure RP 9/10&#xff0c;不支持低版本 应用领域&#xff1a;旅游度假&#xff0c;生活服务 作品申明&#xff1a;页面内容仅用于功能演示&#xff0c;无实际功能 作品特色 本作品为「酒店在线预订」的移动端…

Qt6之如何为QDialog添加最大化和最小化按钮

在QDialog构造函数中添加以下几行代码&#xff1a; // 设置窗体最大化和最小化Qt::WindowFlags windowFlag Qt::Dialog;windowFlag | Qt::WindowMinimizeButtonHint;windowFlag | Qt::WindowMaximizeButtonHint;windowFlag …

三、Kafka生产者

目录 3.1 生产者消息发送流程3.1.1 发送原理 3.2 异步发送 API3.3 同步发送数据3.4 生产者分区3.4.1 kafka分区的好处3.4.2 生产者发送消息的分区策略3.4.3 自定义分区器 3.5 生产者如何提高吞吐量3.6 数据可靠性 3.1 生产者消息发送流程 3.1.1 发送原理 3.2 异步发送 API 3…

【观察】戴尔科技:构建企业创新“韧性”,开辟数实融合新格局

过去几年&#xff0c;国家高度重视发展数字经济&#xff0c;将其上升为国家战略。其中&#xff0c;“十四五”规划中&#xff0c;就明确提出要推动数字经济和实体经济的深度融合&#xff0c;以数字经济赋能传统产业转型升级&#xff1b;而2023年年初正式发布的《数字中国建设整…

python使用matplotlib实现折线图的绘制

一、意义 数据可视化可以以简洁的方式呈现出数据&#xff0c;发现众多数据中隐藏的规律和意义。Matplotlib是一个数学绘图库。利用它可以制作简单的图表&#xff08;散点图、折线图&#xff09;。然后&#xff0c;将基于漫步概念生成一个更有趣的数据集–根据一系列随机决策生成…

【React学习】—组件三大核心属性: state(七)

【React学习】—组件三大核心属性: state&#xff08;七&#xff09; 2.2.2. 理解 state是组件对象最重要的属性, 值是对象(可以包含多个key-value的组合)组件被称为"状态机", 通过更新组件的state来更新对应的页面显示(重新渲染组件) 2.2.3. 强烈注意 组件中rend…

RocketMQ 消息消费 轮询机制 PullRequestHoldService

1. 概述 先来看看 RocketMQ 消费过程中的轮询机制是啥。首先需要补充一点消费相关的前置知识。 1.1 消息消费方式 RocketMQ 支持多种消费方式&#xff0c;包括 Push 模式和 Pull 模式 Pull 模式&#xff1a;用户自己进行消息的拉取和消费进度的更新Push 模式&#xff1a;Broker…

Redis从基础到进阶篇(一)

目录 一、了解NoSql 1.1 什么是Nosql 1.2 为什么要使用NoSql 1.3 NoSql数据库的优势 1.4 常见的NoSql产品 1.5 各产品的区别 二、Redis介绍 2.1什么是Redis 2.2 Redis优势 2.3 Redis应用场景 2.4 Redis下载 三、Linux下安装Redis 3.1 环境准备 3.2 Redis的…

通过LD_PRELOAD绕过disable_functions

LD_PRELOAD 在UNIX的动态链接库的世界中&#xff0c;LD_PRELOAD就是这样一个环境变量&#xff0c;它可以影响程序的运行时的链接&#xff08;Runtime linker&#xff09;&#xff0c;它允许你定义在程序运行前优先加载的动态链接库。这个功能主要就是用来有选择性的载入不同动态…

udp与can通信的选择与比较

UDP&#xff08;用户数据报协议&#xff09;和CAN&#xff08;控制器局域网&#xff09;是两种不同的通信协议&#xff0c;它们在实时传递性上有一些区别。 UDP是一种无连接的传输协议&#xff0c;它提供了简单的、不可靠的数据传输。UDP不提供可靠性保证、流控制或重传机制。…

根据源码,模拟实现 RabbitMQ - 内存数据管理(4)

目录 一、内存数据管理 1.1、需求分析 1.2、实现 MemoryDataCenter 类 1.2.1、ConcurrentHashMap 数据管理 1.2.2、封装交换机操作 1.2.3、封装队列操作 1.2.4、封装绑定操作 1.2.5、封装消息操作 1.2.6、封装未确认消息操作 1.2.7、封装恢复数据操作 一、内存数据管理…

protobuf+netty自定义编码解码

protobufnetty自定义编 项目背景 protobufnetty自定义编码解码 比如心跳协议&#xff0c;客户端请求的协议是10001&#xff0c;在java端如何解码&#xff0c;心跳返回协议如何编码&#xff0c;将协议号带过去 // 心跳包 //10001 message c2s_heartbeat { }//10002 message …

【C++笔记】C++之类与对象(中)

【C笔记】C之类与对象&#xff08;中&#xff09; 1、类的构造函数1.1、构造函数的基本用法1.2、构造函数的7个特性 2、类的析构函数2.1、析构函数的基本用法2.2、析构函数的6个特性 3、类的拷贝构造函数3.1、拷贝构造的基本用法3.2、拷贝构造的“无限套娃”陷阱3.3、深拷贝与浅…

二叉树搜索

✅<1>主页&#xff1a;我的代码爱吃辣&#x1f4c3;<2>知识讲解&#xff1a;数据结构——二叉搜索树☂️<3>开发环境 &#xff1a;Visual Studio 2022&#x1f4ac;<4>前言&#xff1a;在之前的我们已经学过了普通二叉树&#xff0c;了解了基本的二叉树…