【目标检测中对IoU的改进】GIoU,DIoU,CIoU的详细介绍

文章目录

  • 1、IoU
  • 2、GIoU(Generalized Intersection over Union)
  • 3、DIoU
  • 4、CIoU

1、IoU

  • IoU为交并比,即对于pred和Ground Truth:交集/并集
    在这里插入图片描述

1、IoU可以作为评价指标使用,也可以用于构建IoU loss = 1 - IoU
缺点:
2、对于pred和GT相交的情况下,IoU loss可以被反向传播,因为IoU不为0,可以计算梯度。但是二者不相交的话,梯度将会为0,无法优化。
3、pred和GT不相交时,IoU为0,因此无法判断二者距离是远还是近
在这里插入图片描述
4、IOU不能反映两个物体如何重叠(相交方式)。两种情况下的IOU均为0.14,但(a)中两框要比(b)中的相交更整齐一些。
在这里插入图片描述

2、GIoU(Generalized Intersection over Union)

  • 考虑到上述IoU的缺点,在GIoU中做了改进。
    在这里插入图片描述
  • C是包含A与B的最小框,即两个框的外接矩形框
    在这里插入图片描述

1、GIoU对不相交的情况下,不为0,因此使用GIoU loss = 1 - GIoU可以进行梯度的反向传播
2、GIoU可以反应二者的相交情况,对的更齐时GIoU更大,例如上面的第二幅图
3、GIoU可以更好的反应pred和GT之间的距离情况
在这里插入图片描述

3、DIoU

  • DIoU主要考虑了如下的情况
    在这里插入图片描述
  • 即pred完全在GT内部,IoU和GIoU就相同了,不能判断pred中心位置是否接近GT中心
  • 因此,DIoU Loss是在IoU Loss基础上引入一个距离惩罚项,定义如下:
    在这里插入图片描述
  • 上述损失函数中,b,bgt分别代表了anchor框和目标框的中心点,且$$代表的是计算两个中心点间的欧式距离。c代表的是能够同时覆盖anchor和目标框的最小矩形的对角线距离,相当于做了归一化:d/c,如下图所示。
    在这里插入图片描述

1、与GIoU loss类似,DIoU loss在与目标框不相交时,梯度不为0,可以进行优化。
2、收敛更快:DIoU loss可以直接最小化两个目标框的距离,而GIOU loss优化的是两个目标框之间的面积,因此比GIoU loss收敛快得多。
3、对于包含两个框在水平方向和垂直方向上这种情况,DIoU损失可以使回归非常快,而GIoU损失几乎退化为IoU损失

  • DIoU要比GIoU更加符合bbox回归的机制,将GT与pred之间的距离,重叠率以及尺度都考虑进去,使得目标框回归变得更加稳定,不会像IoU和GIoU一样出现训练过程中发散等问题。

4、CIoU

  • 考虑到pred和GT之间的长宽比也是很重要的,因此CIOU Loss又引入一个box长宽比的惩罚项:
    在这里插入图片描述
    在这里插入图片描述

参考链接:https://blog.csdn.net/leonardohaig/article/details/103394369

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/99473.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[MySQL]主从服务器布置

配置主服务器 配置文件 /etc/my.cnf 在[mysqld]下进行配置 log_binON //启动二进制日志 log-bin mysql-bin //启用二进制日志,用于记录主服务器的更新操作 server-id 1 // 用来表示mysql服务id,保证集成环境中的唯一性 , 范围 [1,2^32) read-only0 // 1表示只…

ChatGLM-6B微调记录

目录 GLM-130B和ChatGLM-6BChatGLM-6B直接部署基于PEFT的LoRA微调ChatGLM-6B GLM-130B和ChatGLM-6B 对于三类主要预训练框架: autoregressive(无条件生成),GPT的训练目标是从左到右的文本生成。autoencoding(语言理解…

如何在windows电脑安装多个tomcat服务器和乱码问题

前提条件安装jdk 以17版本为例,将jdk8卸载干净 1.首先进入tomcat官网下载 tomcat网址 这里下载tomcat10为例子 1.1 这里选择方式一 下载解压版 2.解压后拷贝三份 分别命名为 8081、 8082、 8083 3.分别对每个tomcat执行以下操作 3.1 找到tomcat所在webapps文…

java的类和对象详解

一、java是面向对象的编程语言 首先一般的编程语言有两种,一种是面向对象,一种是面向过程。前者更加关注代码中对象与对象之间关系与协作,而后者更加注重代码的执行过程。 举个例子 传统的方式:注重的是洗衣服的过程,…

引领行业高质量发展|云畅科技参编《低代码开发平台创新发展路线图(2023)》

8月8日-9日,中国电子技术标准化研究院于北京顺利召开《低代码开发平台创新发展路线图(2023)》封闭编制会。云畅科技、浪潮、百度、广域铭岛等来自低代码开发平台解决方案供应商、用户方、科研院所等近30家相关单位的40余位专家参与了现场编制…

CentOS 8.5修改安装包镜像源

1 备份原配置 cd /etc/yum.repos.d mkdir backup mv *.repo backup/2 下载镜像源 2.1 使用wget下载 wget http://mirrors.aliyun.com/repo/Centos-8.repo2.2 使用curl下载 我是安装的最小版本的系统,默认只有curl curl使用方法:https://www.ruanyife…

【分布式共识】Multi-Paxos 算法思想

上一篇文章主要聊了Basic Paxos算法,而Multi-Paxos并不是一种算法,是一种算法思想。具体就是Basic Paxos解决的是对一个值达成共识。而后者是通过执行多次的Basic Paxos算法就多个值达成一致。具体的落地实现有Raft。 Muti-Paxos的问题 在Basic Paxos中…

14、缓存预热+缓存雪崩+缓存击穿+缓存穿透

缓存预热缓存雪崩缓存击穿缓存穿透 ● 缓存预热、雪崩、穿透、击穿分别是什么?你遇到过那几个情况? ● 缓存预热你是怎么做到的? ● 如何避免或者减少缓存雪崩? ● 穿透和击穿有什么区别?它两一个意思还是截然不同&am…

CW4-6A-S、CW4-10A-S、CW4-20A-S、CW4-30A-S螺栓式滤波器

CW3L2-3A-S、CW3L2-6A-S、CW3L2-10A-S、CW3L2-20A-S CW3-3A-S、CW3-6A-S、CW3-10A-S、CW3-20A-S、CW3-30A-S CW4EL2-3A-S、CW4EL2-6A-S、CW4EL2-10A-SCW4EL2-20A-S、CW4EL2-30A-S CW4E-3A-S、CW4E-6A-S、CW4E-10A-S、CW4E-20A-S、CW4E-30A-S CW4E-40A-S(001)、CW4E-50A-S(0…

论文导读 | Operation ResearchManagement Science近期文章精选

推文作者:周梓渊 编者按 如何准确估计和预测债券风险溢价?债券保险是否为市政债券的发行人提供价值?我们如何界定社会福利政策对小部分群体的负面影响?垄断零售商的线上线下定价有何诀窍?顶刊中的行为理论真的对应现实…

排名前 6 位的数学编程语言

0 说明 任何对数学感兴趣或计划学习数学的人,都应该至少对编程语言有一定的流利程度。您不仅会更有就业能力,还可以更深入地理解和探索数学。那么你应该学习什么语言呢? 1.python 对于任何正在学习数学的人来说,Python都是一门很棒…

win10系统docker创建ubuntu容器解决开发环境问题

一、win10系统使用docker的原因 最近啊,在学习人工智能-深度学习,用的win10系统进行开发,老是出现一些莫名其妙的问题,无法解决,每天都在为环境问题搞得伤透了脑筋。 说到底还是要使用Linux系统进行开发比较合适。 …

跟随角色镜头时,解决地图黑线/白线缝隙的三种方案

下面一共三个解决方案,这里我推荐第二个方案解决,因为够快速和简单。 现象: 解决方案一: 参考【Unity2D】去除地图中的黑线_unity选中后有线_香菇CST的博客-CSDN博客,博主解释是因为抗锯齿采样导致的问题。 具体到这…

【后端】Core框架版本和发布时间以及.net 6.0启动文件的结构

2023年,第35周,第1篇文章。给自己一个目标,然后坚持总会有收货,不信你试试! .NET Core 是一个跨平台的开源框架,用于构建现代化的应用程序。它在不同版本中有一些重要的区别和发布时间 目录 一、Core版本和…

【OpenVINOSharp】在英特尔® 开发者套件爱克斯开发板使用OpenVinoSharp部署Yolov8模型

在英特尔 开发者套件爱克斯开发板使用OpenVinoSharp部署Yolov8模型 一、英特尔开发套件 AIxBoard 介绍1. 产品定位2. 产品参数3. AI推理单元 二、配置 .NET 环境1. 添加 Microsoft 包存储库2. 安装 SDK3. 测试安装4. 测试控制台项目 三、安装 OpenVINO Runtime1. 下载 OpenVINO…

Linux的热拔插UDEV机制

文章目录 UDEV简介守护进程基本特点 守护进程和后台进程的区别开发守护进程结束 UDEV简介 udev是一个设备管理工具,udev以守护进程的形式运行,通过侦听内核发出来的uevent来管理/dev目录下的设备文件。 udev在用户空间运行,而不在内核空间 …

css 文字排版-平铺

序: 1、表格的宽度要有!!!!! 2、容器不能是display:inline 3、扩展---》node全栈框架 代码 text-align-last: justify; width: 70px; display: inline-block; 主要是用于表单左侧文字排序!

resource doesn‘t have a corresponding Go package.

resource doesnt have a corresponding Go package. GO这个鬼东西不能直接放src下。 ************ Building Go project: ProjectGoTest ************with GOPATH: D:\Go;D:\eclipse-jee-oxygen-2-win32-x86_64\workspace\ProjectGoTest >> Running: D:\Go\bin\go.exe …

探索人工智能 | 模型训练 使用算法和数据对机器学习模型进行参数调整和优化

前言 模型训练是指使用算法和数据对机器学习模型进行参数调整和优化的过程。模型训练一般包含以下步骤:数据收集、数据预处理、模型选择、模型训练、模型评估、超参数调优、模型部署、持续优化。 文章目录 前言数据收集数据预处理模型选择模型训练模型评估超参数调…

PSP - 基于扩散生成模型预测蛋白质结构 EigenFold 算法与环境配置

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132357976 Paper: EigenFold: Generative Protein Structure Prediction with Diffusion Models EigenFold 是用于蛋白质结构预测的扩散生成模型…