时序预测 | MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价)

目录

    • 时序预测 | MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价)
      • 预测结果
      • 基本介绍
      • 程序设计
      • 参考资料

预测结果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价)
1.MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价);
2.运行环境Matlab2020及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现基于CNN-GRU卷积门控循环单元的时间序列预测-递归预测未来(多指标评价)
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/132093256

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/100103.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

测试框架pytest教程(6)钩子函数hook

在pytest中,"hook"是用于自定义和扩展测试流程的机制。它允许你在特定时间点插入自己的代码,以便对测试进行修改、补充或拦截。 pytest的hook是基于Python的插件系统实现的,使用特定的命名规范和装饰器来定义钩子函数。你可以在py…

Laravel 模型的作用域 模型的访问器和修改器 ⑨

作者 : SYFStrive 博客首页 : HomePage 📜: THINK PHP 📌:个人社区(欢迎大佬们加入) 👉:社区链接🔗 📌:觉得文章不错可以点点关注 &#x1f44…

5个最重要的开源电商 ERP 系统功能

作为开源电商 ERP 系统领域的专家,我想分享一下电商企业在选择 ERP 系统时需要考虑的关键功能。 功能一:库存管理 库存管理是任何一家电商企业都必须考虑的问题。好的库存管理系统可以帮助企业减少库存积压、避免库存短缺,并提高库存周转率…

ShardingSphere01-docker环境安装

使用docker安装数据库是一个非常好的选择,后续的读写分离、数据分片等功能的数据库都是由docker创建。 一、安装准备 1、前提条件 Docker可以运行在Windows、Mac、CentOS、Ubuntu等操作系统上 Docker支持以下的CentOS版本: CentOS 7 (64-bit)CentOS …

浅谈日常使用的 Docker 底层原理-三大底座

适合的读者,对Docker有过简单了解的朋友,想要进一步了解Docker容器的朋友。 前言 回想我这两年,一直都是在使用 Docker,看过的视频、拜读过的博客,大都是在介绍 Docker 的由来、使用、优点和发展趋势,但对…

Wlan——STA上线流程与802.11MAC帧讲解

目录 802.11MAC帧基本概念 802.11帧结构 802.11MAC帧的分类 管理帧 控制帧 数据帧 STA接入无线网络流程 信号扫描—管理帧 链路认证—管理帧 用户关联—管理帧 用户上线 802.11MAC帧基本概念 802.11协议在802家族中的角色位置 其中802.3标准属于以太网的一种帧格式…

冠达管理:定增获批后会大涨吗?

近年来,跟着我国资本商场的稳步发展,定向增发(定增)已成为不少上市公司的一种重要融资方法,其比较于揭露发行股票,更能够满足少量出资者的融资需求。然而,对于很多出资者来说,一个问…

【Linux操作系统】深入探索Linux系统编程中的信号集操作函数

在Linux系统编程中,信号集操作函数是非常重要的工具,它们允许我们对信号进行管理和控制。本篇博客将详细介绍Linux系统编程中的信号集操作函数,包括信号集的创建、添加和删除信号,以及对信号集进行操作的常用函数。通过深入了解这…

华为云Stack的学习(一)

一、华为云Stack架构 1.HCS 物理分散、逻辑统一、业务驱动、运管协同、业务感知 2.华为云Stack的特点 可靠性 包括整体可靠性、数据可靠性和单一设备可靠性。通过云平台的分布式架构,从整体系统上提高可靠性,降低系统对单设备可靠性的要求。 可用性…

android cocoscreator 检测模拟器还是真机

转载至 一行代码帮你检测Android模拟器 具体原理看原博主文章,这里只讲cocoscreator3.6的安卓工程怎么使用 1.新建一个com.lahm.library包,和com.cocos.game同目录,如图示 那四个文件的代码如下: EmulatorCheckUtil类&#…

OS 多进程图像

schedule()函数为切换进程函数,pCur.state被置为阻塞态,放入磁盘等待队列 pCur和pNew都为对应pcb(为了使参与并发执行的每个程序,包含数据都能独立地运行,在操作系统中必须为之配置一个专门的数据结构,称为…

解决`java.lang.NoClassDefFoundError`在Nacos和Spring Boot集成中的问题

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

函数栈帧的创建与销毁

目录 引言 基础知识 内存模型 ​ 寄存器的种类与功能 常用的汇编指令 函数栈帧创建与销毁 main()函数栈帧的创建 NO1. NO2. NO3. NO4. NO5. NO6. main()函数栈帧变量的创建 调用Add()函数栈帧的预备工作——传参 NO1. NO2. NO3. Add()函数栈帧的创建 …

机器学习:什么是分类/回归/聚类/降维/决策

目录 学习模式分为三大类:监督,无监督,强化学习 监督学习基本问题 分类问题 回归问题 无监督学习基本问题 聚类问题 降维问题 强化学习基本问题 决策问题 如何选择合适的算法 我们将涵盖目前「五大」最常见机器学习任务&#xff1a…

Python Opencv实践 - 图像中值滤波

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape) pixel_count img.shape[0] * img.shape[1] print(pixel_count)#为图像添加椒盐噪声 #参考资料&#xf…

如何通过振动判断设备健康度?以PreMaint设备数字化平台为例

在工业生产过程中,设备的健康状况直接关系到生产效率和安全。而振动分析作为一种重要的设备健康监测手段,可以通过监测设备的振动情况来判断其健康状况。本文将以PreMaint设备数字化平台为例,探讨如何通过振动分析来判断设备的健康度&#xf…

电商系统架构设计系列(九):如何规划和设计分库分表?

上篇文章中,我给你留了一个思考题:分库分表该如何设计? 今天这篇文章,我们来聊一下如何规划和设计分库分表,以及要考虑哪些问题。 引言 当要解决海量数据的问题,就必须要用到分布式的存储集群了&#xff…

ROS2 中的分布式系统

一、说明 当您运行 ROS2 应用程序时,通常需要在不同机器的不同位置运行 ROS2 节点。由于 ROS2 在抽象的 DDS 层中使用节点之间的通信,因此我们可以非常轻松地安排通信。 为了充分理解 ROS2 的架构,我建议您熟悉本文。 出于本文的目的&#xf…

江西南昌电气机械三维测量仪机械零件3d扫描-CASAIM中科广电

精密机械零部件是指机械设备中起到特定功能的零件,其制造精度要求非常高。这些零部件通常由金属、塑料或陶瓷等材料制成,常见的精密机械零部件包括齿轮、轴承、螺丝、活塞、阀门等。精密机械零部件的制造需要高精度的加工设备和工艺,以确保其…

微信小程序使用npm引入三方包详解

目录 1 前言2 微信小程序npm环境搭建2.1 创建package.json文件2.2 修改 project.config.json2.3 修改project.private.config.json配置2.4 构建 npm 包2.5 typescript 支持2.6 安装组件2.7 引入使用组件 1 前言 从小程序基础库版本 2.2.1 或以上、及开发者工具 1.02.1808300 或…