计算机网络第2章(物理层)

计算机网络第2章(物理层)

  • 2.1 物理层的基本概念
  • 2.2 物理层下面的传输媒体
    • 2.2.1 导引型传输媒体
    • 2.2.2 非导引型传输媒体
  • 2.3 传输方式
    • 2.3.1 串行传输和并行传输
    • 2.3.2 同步传输和异步传输
    • 2.3.3 单向通信(单工)、双向交替通信(半双工)和双向同时通信(全双工)
  • 2.4 编码与调制
    • 2.4.1 传输媒体与信道的关系
    • 2.4.2 常用编码
    • 2.4.3 调制
    • 2.4.4 码元
  • 2.5 信道的极限容量
  • 补充:信道复用技术
    • 频分复用、时分复用和统计时分复用
    • 时分复用TDM (Time Division Multiplexing)
    • 波分复用
    • 码分复用

2.1 物理层的基本概念

在这里插入图片描述

2.2 物理层下面的传输媒体

传输媒体也称为传输介质或传输媒介,它就是数据传输系统中在发送器和接收器之间的物理通路。传输媒体课分为两大类,即导引型传输媒体非导引型传输媒体
传输媒体不属于计算机网络体系结构的任何一层。如果非要将它添加到体系结构中,那只能将其放置到物理层之下。

2.2.1 导引型传输媒体

在导引型传输媒体中,电磁波被导引沿着固体媒体传播
(1)同轴电缆
在这里插入图片描述
(2)双绞线
在这里插入图片描述
(3)光纤
在这里插入图片描述
在这里插入图片描述
多模光纤
可以存在多条不同角度入射的光线在一条光纤中传输。这种光纤就称为多模光纤。
单模光纤
若光纤的直径减小到只有一个光的波长,则光纤就像一根波导那样,它可使光线一直向前传播,而不会产生多次反射。这样的光纤称为单模光纤。

(4)电力线
在这里插入图片描述

2.2.2 非导引型传输媒体

非导引型传输媒体是指自由空间
在这里插入图片描述
(1)无线电波
在这里插入图片描述
(2)微波
在这里插入图片描述
(3)红外线
在这里插入图片描述
(4)可见光
在这里插入图片描述

2.3 传输方式

2.3.1 串行传输和并行传输

在这里插入图片描述
串行传输:

  • 数据是一个比特一个比特依次发送的,因此在发送端与接收端之间,只需要一条数据传输线
    路即可

并行传输:

  • 一次发送n个比特,因此,在发送端和接收端之间需要有n条传输线路
  • 并行传输的优点是比串行传输的速度n倍,但成本高
    数据在传输线路上的传输采用是串行传输,计算机内部的数据传输常用并行传输

2.3.2 同步传输和异步传输

在这里插入图片描述
同步传输:

  • 数据块以稳定的比特流的形式传输。字节之间没有间隔
  • 接收端在每个比特信号的中间时刻进行检测,以判别接收到的是比特0还是比特1
  • 由于不同设备的时钟频率存在一定差异,不可能做到完全相同,在传输大量数据的过程中,所产生的判别时刻的累计误差,会导致接收端对比特信号的判别错位

所以要使收发双发时钟保持同步
在这里插入图片描述
异步传输

  • 字节为独立的传输单位,字节之间的时间间隔不是固定
  • 接收端仅在每个字节的起始处对字节内的比特实现同步
  • 通常在每个字节前后分别加上起始位和结束位

2.3.3 单向通信(单工)、双向交替通信(半双工)和双向同时通信(全双工)

在许多情况下,我们要使用“信道(channel)”这一名词。信道和电路并不等同。信道一般都是用来表示向某一个方向传送信息的媒体。因此,一条通信电路往往包含一条发送信道和一条接收信道。
从通信的双方信息交互的方式来看,可以有以下三种基本方式:
(1)单向通信
又称为单工通信,即只能有一个方向的通信而没有反方向的交互。无线电广播或有线电以及电视广播就属于这种类型
在这里插入图片描述
(2)双向交替通信
又称为半双工通信,即通信的双方可以发送信息,但不能双方同时发送(当然也就不能同时接收)。这种通信方式使一方发送另一方接收,过一段时间后可以再反过来
在这里插入图片描述
(3)双向同时通信
又称为全双工通信,即通信的双发可以同时发送和接收信息。
在这里插入图片描述**区别:**单向通信只需要一条信道,而双向交替通信或双向同时通信则需要两条信道(每个方向各一条)双向同时通信的传输效率最高

2.4 编码与调制

在这里插入图片描述
常用术语

  • 数据 (data) —— 运送消息的实体。
  • 信号 (signal) —— 数据的电气的或电磁的表现。
  • 模拟信号 (analogous signal) —— 代表消息的参数的取值是连续的。
  • 数字信号 (digital signal) —— 代表消息的参数的取值是离散的。
  • 码元 (code) —— 在使用时间域(或简称为时域)的波形表示数字信号时,代表不同离散数值的基本波形。
  • 基带信号(即基本频带信号)—— 来自信源的信号。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。
  • 基带信号往往包含有较多的低频成分,甚至有直流成分,而许多信道并不能传输这种低频分量或直流分量。因此必须对基带信号进行调制 (modulation)。

在计算机网络中,常见的是将数字基带信号通过编码调制的方法在相应信道进行传输
在这里插入图片描述

2.4.1 传输媒体与信道的关系

信道的几个基本概念

  • 信道 —— 一般用来表示向某一个方向传送信息的媒体。
  • 单向通信(单工通信)——只能有一个方向的通信而没有反方向的交互。
  • 双向交替通信(半双工通信)——通信的双方都可以发送信息,但不能双方同时发送(当然也就不能同时接收)。
  • 双向同时通信(全双工通信)——通信的双方可以同时发送和接收信息。

严格来说,传输媒体不能和信道划等号
对于单工传输,传输媒体只包含一个信道,要么是发送信道,要么是接收信道
在这里插入图片描述
对于半双工和全双工,传输媒体中要包含两个信道,一个发送信道,另一个是接收信道
在这里插入图片描述

如果使用信道复用技术,一条传输媒体还可以包含多个信道

2.4.2 常用编码

在这里插入图片描述

  • 正电平表示比特1/0
  • 负电平表示比特0/1
    中间的虚线是零电平,所谓不归零编码,就是指在整个码元时间内,电平不会出现零电平
    实际比特1和比特0的表示要看现实怎么规定
    在这里插入图片描述
    这需要发送方的发送与接收方的接收做到严格的同步
  • 需要额外一根传输线来传输时钟信号,使发送方和接收方同步,接收方按时钟信号的节拍来逐个接收码元
  • 但是对于计算机网络,宁愿利用这根传输线传输数据信号,而不是传输时钟信号
    由于不归零编码存在同步问题,因此计算机网络中的数据传输不采用这类编码!
    在这里插入图片描述
  • 每个码元传输结束后信号都要“归零”,所以接收方只要在信号归零后进行采样即可,不需要单独的时钟信号。
  • 实际上,归零编码相当于把时钟信号用“归零”方式编码在了数据之内,这称为“自同步”信号。
  • 但是,归零编码中大部分的数据带宽,都用来传输“归零”而浪费掉了。

归零编码虽然自同步,但编码效率低
在这里插入图片描述
在每个码元时间的中间时刻,信号都会发生跳变

  • 负跳变表示比特1/0
  • 正跳变表示比特0/1
  • 码元中间时刻的跳变即表示时钟,又表示数据

实际比特1和比特0的表示要看现实怎么规定
传统以太网使用的就是曼切斯特编码
在这里插入图片描述
在每个码元时间的中间时刻,信号都会发送跳变,但与曼彻斯特不同

  • 跳变仅表示时钟
  • 码元开始处电平是否变换表示数据
    (1)变化表示比特1/0
    (2)不变化表示比特0/1

实际比特1和比特0的表示要看现实怎么规定
比曼彻斯特编码变化少,更适合较高的传输速率

总结
在这里插入图片描述

2.4.3 调制

数字信号转换为模拟信号,在模拟信道中传输,例如WiFi,采用补码键控CCK/直接序列扩频DSSS/正交频分复用OFDM等调制方式。
模拟信号转换为另一种模拟信号,在模拟信道中传输,例如,语音数据加载到模拟的载波信号中传输。
频分复用FDM技术,充分利用带宽资源。
基本调制方法
在这里插入图片描述

  • 调幅AM:所调制的信号由两种不同振幅的基本波形构成。每个基本波形只能表示1比特信息量。
  • 调频FM:所调制的信号由两种不同频率的基本波形构成。每个基本波形只能表示1比特信息量。
  • 调相PM:所调制的信号由两种不同初相位的基本波形构成。每个基本波形只能表示1比特信息量。

但是使用基本调制方法,1个码元只能包含1个比特信息

混合调制
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

上图码元所对应的4个比特是错误的,码元不能随便对应4个比特
加粗样式

2.4.4 码元

在使用时间域的波形表示数字信号时,代表不同离散数值的基本波形。

2.5 信道的极限容量

  • 任何实际的信道都不是理想的,在传输信号时会产生各种失真以及带来多种干扰。
  • 码元传输的速率越高,或信号传输的距离越远,或传输媒体质量越差,在信道的输出端的波形的失真就越严重

在这里插入图片描述
失真的原因:

  • 码元传输的速率越高
  • 信号传输的距离越远
  • 噪声干扰越大
  • 传输媒体质量越差

在这里插入图片描述
在这里插入图片描述
奈氏准则和香农公式对比:
在这里插入图片描述

补充:信道复用技术

频分复用、时分复用和统计时分复用

复用 (multiplexing) 是通信技术中的基本概念。
它允许用户使用一个共享信道进行通信,降低成本,提高利用率。

在这里插入图片描述
频分复用 FDM (Frequency Division Multiplexing)

  • 将整个带宽分为多份,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。
  • 频分复用的所有用户在同样的时间占用不同的带宽资源(请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。
    在这里插入图片描述

时分复用TDM (Time Division Multiplexing)

  • 时分复用则是将时间划分为一段段等长的时分复用帧(TDM帧)。每一个时分复用的用户在每一个TDM 帧中占用固定序号的时隙。
  • 每一个用户所占用的时隙是周期性地出现(其周期就是TDM帧的长度)的。
  • TDM 信号也称为等时 (isochronous) 信号。
  • 时分复用的所有用户在不同的时间占用同样的频带宽度。
    -在这里插入图片描述
  • 时分复用可能会造成线路资源的浪费
    (1)使用时分复用系统传送计算机数据时,由于计算机数据的突发性质,用户对分配到的子信道的
    利用率一般是不高的。
    在这里插入图片描述
    统计时分复用 STDM (Statistic TDM)
    在这里插入图片描述

波分复用

波分复用 WDM(Wavelength Division Multiplexing
在这里插入图片描述

码分复用

码分复用 CDM (Code Division Multiplexing)

  • 常用的名词是码分多址 CDMA (Code Division Multiple Access)。
  • 各用户使用经过特殊挑选的不同码型,因此彼此不会造成干扰。
  • 这种系统发送的信号有很强的抗干扰能力,其频谱类似于白噪声,不易被敌人发现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/100159.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

很好的启用window10专业版系统自带的远程桌面

启用window10专业版系统自带的远程桌面 文章目录 启用window10专业版系统自带的远程桌面前言1.找到远程桌面的开关2. 找到“应用”项目3. 打开需要远程操作的电脑远程桌面功能 总结 前言 Windows操作系统作为应用最广泛的个人电脑操作系统,在我们身边几乎随处可见。…

分布式事务(4):两阶段提交协议与三阶段提交区别

1 两阶段提交协议 两阶段提交方案应用非常广泛,几乎所有商业OLTP数据库都支持XA协议。但是两阶段提交方案锁定资源时间长,对性能影响很大,基本不适合解决微服务事务问题。 缺点: 如果协调者宕机,参与者没有协调者指…

如何在window下cmd窗口执行linux指令?

1.Git:https://git-scm.com/downloads(官网地址) 2.根据自己的实际路径,添加两个环境变量 3.重启电脑

Kubernetes教程—查看 Pod 和节点

目标 了解 Kubernetes Pod。了解 Kubernetes 节点。对已部署的应用故障排除。 Kubernetes Pod 在模块 2 中创建 Deployment 时, Kubernetes 创建了一个 Pod 来托管你的应用实例。Pod 是 Kubernetes 抽象出来的, 表示一组一个或多个应用容器(如 Docker…

爬虫借助代理会让网速快点吗?

亲爱的程序员朋友们,你曾经遇到过爬虫网速慢的情况吗?别着急!今天我将和你一起探讨一下使用代理是否可以加速爬虫,让我们一起进入这个轻松又专业的知识分享。 一、原因和机制的解析 1.IP限制 某些网站为了保护资源和防止爬虫行…

线段树详解——影子宽度

OK,今天来讲一讲线段树~~ 线段树是什么线段树的实现线段树的时间复杂度线段树的应用线段树的节点结构其他操作和优化例题——影子宽度输入输出格式输入格式输出格式 输入输出样例输入样例输出样例 例题讲解 线段树是什么 线段树( S e g m e n t Segmen…

Goland 注释时自动在注释符号后添加空格

不得不说 JetBrains 旗下的 IDE 都好用,而且对于注释这块,使用 Ctrl / 进行注释的时候,大多会在每个注释符号后统一添加一个空格,比如 PyCharm 和 RubeMine 等。 # PyCharm # print("hello world") # RubyMine # req…

Confluent kafka 异常退出rd_tmpabuf_alloc0: rd kafka topic info_new_with_rack

rd_tmpabuf_alloc0: rd kafka topic info_new_with_rack 根据网上的例子,做了一个测试程序。 C# 操作Kafka_c# kafka_Riven Chen的博客-CSDN博客 但是执行下面一行时,弹出上面的异常,闪退。 consumer.Subscribe(queueName) 解决方案&…

攻防世界-supersqli

原题 解题思路 直接查找看不到明显的回显变化 先找回显变化数量 -1 order by 2 #如果是3列就报错,说明只有两列。接下来找数据库名称: -1 union select 1,databases # 结果是后端做了一些简单的过滤,需要更换查找语句。 -1; show …

sNMFcross-entropyK

0.简单介绍 稀疏非负矩阵(sNMF)和最小二乘优化来产生祖先比例估计数的祖先推断算法,这个算法呢与admixture来说差别不是很大,但是优点就是快,运算速度可以快到10-30倍左右。 1.安装 这一步不必多说,下载…

PHP加密与安全的最佳实践

PHP加密与安全的最佳实践 概述 在当今信息时代,数据安全是非常重要的。对于开发人员而言,掌握加密和安全的最佳实践是必不可少的。PHP作为一种常用的后端开发语言,提供了许多功能强大且易于使用的加密和安全性相关函数和类。本文将介绍一些P…

C# WPF ListBox 动态显示图片

前言 最近在和其他软件联合做一个本地图片选择传输功能,为此希望图片能够有序的呈现在客户端,简单的实现了一下功能,通过Mvvm模式进行呈现,过程简单通俗,话不多说直接上图。 处理过程 前台代码 你只需要粘贴到你的前台…

c#设计模式-结构型模式 之 桥接模式

前言 桥接模式是一种设计模式,它将抽象与实现分离,使它们可以独立变化。这种模式涉及到一个接口作为桥梁,使实体类的功能独立于接口实现类。这两种类型的类可以结构化改变而互不影响。 桥接模式的主要目的是通过将实现和抽象分离,…

css学习2(利用id与class修改元素)

1、id选择器可以为标有特定id的html元素指定特定的样式。 2、选择器以#开头,后跟某id的属性值。 3、class选择器用于描述一组元素的样式,class可以在多个元素使用。 4、类选择器用.选择。 5、指定特定的元素使用class。 6、元素的多个类用空格分开&…

SpringCloud学习笔记(一)_快速入门

SpringCloud简介 Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智能路由,微代理,控制总线)。分布式系统的协调导致了样板模式, 使用Spr…

【React】生命周期和钩子函数

概念 组件从被创建到挂载到页面中运行,再到组件不用时卸载的过程。 只有类组件才有生命周期。 分为三个阶段: 挂载阶段更新阶段销毁阶段 三个阶段 挂载阶段 钩子函数 - constructor 创建阶段触发 作用:创建数据 之前定义状态是简写&…

Linux面试笔试题(5)

79、下列工具中可以直接连接mysql的工具有【c 】。 A.xhsell B.plsql C.navicat D.以上都不是 Navicat 是一套可创建多个连接的数据库开发工具, 让你从单一应用程序中同时连接 MySQL、Redis、MariaDB、MongoDB、 SQL Server、Oracle、PostgreSQL和 SQLite 。它与…

【算法日志】贪心算法刷题:重叠区问题(day31)

代码随想录刷题60Day 目录 前言 无重叠区间&#xff08;筛选区间&#xff09; 划分字母区间&#xff08;切割区间&#xff09; 合并区间 前言 今日的重点是掌握重叠区问题。 无重叠区间&#xff08;筛选区间&#xff09; int eraseOverlapIntervals(vector<vector<in…

已解决Gradle错误:“Unable to load class ‘org.gradle.api.plugins.MavenPlugin‘”

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

恒运资本:信创概念再度活跃,华是科技再创新高,南天信息等涨停

信创概念21日盘中再度活跃&#xff0c;截至发稿&#xff0c;华是科技涨超17%&#xff0c;盘中一度触及涨停再创新高&#xff0c;中亦科技涨超13%亦创出新高&#xff0c;久其软件、南天信息、新炬网络、英飞拓均涨停。 音讯面上&#xff0c;自8月3日以来&#xff0c;财政部官网连…