还不知道怎么提示LLM?ChatGPT提示入门

文章目录

  • 简介:
    • 什么是人工智能?
    • 什么是提示过程?
    • 为什么会出现这样的差异?
  • 为什么需要提示过程?
    • 1) 文章摘要
    • 2) 数学问题求解
  • 如何进行提示过程?
    • 角色提示:
    • 多范例提示:
      • 无范例提示
      • 单范例提示
      • 多范例提示
    • 组合提示:
    • 规范化提示:
    • 风格提示:
  • 提示过程的应用
    • 写邮件:
    • 代码辅助:
    • 代码生成:
    • 代码注释:
    • Debug代码:
  • 总结:
  • 引用:

简介:

什么是人工智能?

从目的的角度出发,人工智能(AI)是人们创造的一些“聪明的”的算法,使得机器能够像人类一样“思考”。这些算法可以写论文、解决数学问题,并创造艺术。该领域的最新进展已经十分先进,以至于人工智能可以写出令人信服的销售邮件、新闻报道,甚至可以赢得艺术比赛。

什么是提示过程?

提示过程指的是人类如何指导 AI 执行任务,即指导人工智能执行任务的过程称为提示过程。我们向 AI 提供一组指令(提示),然后它执行任务。提示可以简单到一个问题,也可以复杂到多个段落。
而提示过程的好坏可以在很大程度上影响到AI大模型生成答案的能力!

为什么会出现这样的差异?

因为LLM本质上是自回归的语言模型,而自回归的语言模型训练是通过Decoder对每个词的位置只可见前面位置的词这样的Mask Self-Attention的形式来计算并生成的,每个词对后面未来的词是不可见的,简而言之,就是当前词的生成依赖于前面已经生成的文本,而这个过程是自回归模型结构决定的。
举个例子,如下图:
在这里插入图片描述

在自回归模型解码生成上面一句话的过程中,解码器是如何训练计算loss的呢?
<s>,北,京,欢,迎,你这个例子做生成过程来解释。(<s>为起始词,为结束词)
训练时:
把“<s> 北,京,欢,迎,你”的word embedding和position embedding处理后后输入到decoder中去,而用于指导其每个位置生成的ground-truth应该是 “北,京,欢,迎,你,”

  1. 将<s> 作为decoder的初始输入,将decoder的最大概率输出词向量A1和‘北’做cross entropy(交叉熵)计算error。
  2. 将<s>,“” 作为decoder的输入,将decoder的最大概率输出词 A2 和‘京’做cross entropy计算error。
  3. 将<s>,“北”,“京” 作为decoder的输入,将decoder的最大概率输出词A3和’欢’ 做cross entropy计算error。
  4. 将<s>,“北”,“京”,“欢” 作为decoder的输入,将decoder最大概率输出词A4和‘迎’做cross entropy计算error。
  5. 将<s>,“北”,“京”,“欢” ,“迎” 作为decoder的输入,将decoder最大概率输出词A5和‘你’做cross entropy计算error。
  6. 将<s>,**“北”,“京”,“欢” ,“迎” ,“你”**作为decoder的输入,将decoder最大概率输出词A5和结束词做cross entropy计算error。
    那么并行的时候是怎么做的呢,我们会有一个mask矩阵在这叫sequence mask,因为他起到的作用是在decoder编码我们的target sequence的时候对每一个词的生成遮盖它之后的词的信息,形状上图所示。
    这也就是为什么LLM可以用海量的数据进行自回归模型的训练,因为每个token的解码是可以并行的,这也是RNN无法做到的,唯一的挑战就是对于GPU的资源消耗。
    同时,因为LLM训练和生成解码的自回归特性,如何使用有效的提示过程,就可以让LLM在解码的时候捕捉到更加丰富的“前情提要”信息,从而生成出更加准确且连贯的答案!

为什么需要提示过程?

以下是两个提示的示例:

1) 文章摘要

假设你正在阅读一篇关于佛罗里达州降雪的文章。你想快速了解文章的主要内容,因此你向 AI 展示你正在阅读的内容,并要求进行摘要:
佛罗里达州很少下雪,特别是在中部和南部地区。除了州的极北部地区外,佛罗里达州大部分主要城市都没有记录到可测量的降雪量,尽管记录到了少量的痕迹,或者每个世纪观测到几次空气中的飘雪。根据国家气象局的数据,在佛罗里达群岛和基韦斯特群岛自欧洲殖民以来没有发生过飘雪的情况,已有超过300年时间。在迈阿密、劳德代尔堡和棕榈滩,超过200年中只有一次关于在空气中观察到飘雪的报告,发生在1977年1月。在任何情况下,自这次1977年的事件以来,迈阿密、劳德代尔堡和棕榈滩都没有看到过飘雪的情况。

以下是 AI 的回复。更简洁易读!
佛罗里达州很少下雪,除了州的极北部地区外,在过去的200年中迈阿密、劳德代尔堡和棕榈滩这些主要城市中只有一次观察到空气中飘雪的报告。

2) 数学问题求解

如果你有一个数学方程,想让语言模型来解决,你可以通过提问 “数学方程等于几” 来输入提示。
对于一个给定的问题,你的完整提示可能是这样的:
965 * 590 等于几?

对于这个提示,GPT-3(一种 AI 模型)有时会回答 569,050(不正确)。
而如果我们不是问965 * 590 等于几?,而是问确保你的答案完全正确。965*590 等于几?确保你的答案完全正确:,GPT-3 将会回答 569,350(正确)这就是提示工程的重要性所在。

如何进行提示过程?

有很多种提示方式

角色提示:

一种提示技术是给 AI 分配一个角色。例如,你的提示可以以"你是一名医生"或"你是一名律师"开始,然后要求 AI 回答一些医学或法律问题。举个例子:
你是一个能解决世界上任何问题的杰出数学家。试着解决下面的问题:100100/40056 是多少?

AI (GPT-3 davinci-003) 的答案:
答案是 1400。

例如:
我想让你充当软件开发人员。我将提供一些关于 Web 应用程序要求的具体信息,您的工作是提出用于使用 Golang 和 Angular 开发安全应用程序的架构和代码。我的第一个要求是’我想要一个允许用户根据他们的角色注册和保存他们的车辆信息的系统,并且会有管理员,用户和公司角色。我希望系统使用 JWT 来确保安全。

更多角色提示语句见

  • 中文:150种ChatGPT最佳实践提示模版
  • 英文:Awesome ChatGPT Prompts

多范例提示:

多范例提示(few shot prompting), 这种策略将为模型展示一些例子(shots),从而更形象地描述你的需求。通过给出少量例子来对模型进行提示,从而使得模型快速得到想要的结果模式,从而在指定的范式下生成

不同类型的范例提示
单词 shot 在该场景下与 example(范例) 一致。除了多范例提示(few-shot prompting)之外,还有另外两种不同的类型。它们之间唯一的区别就是你向模型展示了多少范例。
类型:

  • 无范例提示(0 shot prompting): 不展示范例
  • 单范例提示(1 shot prompting): 只展示 1 条范例
  • 多范例提示(few shot prompting): 展示 2 条及以上的范例

无范例提示

无范例提示是最基本的提示形式。它仅仅是向模型展示提示信息,没有提供任何示例,并要求其生成回答。因此,你到目前为止看到的所有指令和角色提示都属于无范例提示。无范例提示的另一个例子是:
Add 2+2:

这是无范例提示,因为我们没有向模型展示任何完整的示例。

单范例提示

单范例提示是向模型展示一个示例。例如:
Add 3+3: 6
Add 2+2:

我们仅向模型展示了一个完整的示例(“Add 3+3: 6”),因此这是一个单范例提示。

多范例提示

多范例提示是向模型展示2个或更多示例。例如:
Add 3+3: 6
Add 5+5: 10
Add 2+2:

这是我们向模型展示了至少2个完整的示例(“Add 3+3: 6”和“Add 5+5: 10”)。通常,展示给模型的示例越多,输出结果就越好,因此在大多数情况下,多范例提示比另外两种提示更受欢迎。

组合提示:

以下是一个包含上下文、指令以及多示例提示的例子:
Twitter是一个社交媒体平台,用户可以发布称为“推文”的短消息。推文可以是积极的或消极的,我们希望能够将推文分类为积极或消极。以下是一些积极和消极推文的例子。请确保正确分类最后一个推文。
Q: 推文: "今天真是美好的一天!"这条推文是积极的还是消极的?
A: 积极的
Q: 推文: 我讨厌这个班级"这条推文是积极的还是消极的?
A: 消极的
Q: 推文: “我喜欢牛仔裤上的口袋”
A:

通过添加额外的上下文和示例,我们通常可以提高人工智能在不同任务上的表现。

规范化提示:

以下是在一个提示中将时常看到的一些组成部分:

  • 角色
  • 指令/任务
  • 问题
  • 上下文
  • 示例(few shot)
    我们发现,通过规范这样的语句往往可以提升LLM回答的准确程度
    例如:
    假如你是一名Python程序员。
    请编写python代码,生成3个单词数组(每个数组6个单词)分别包括介词、动词和名词,名词也用作直接宾语,从中选出指定的词组成一个句子,并确保可以执行。

输出结果可能像下面一样:
import random
prepositions = [‘at’, ‘in’, ‘on’, ‘with’, ‘under’, ‘over’]
verbs = [‘run’, ‘jump’, ‘dance’, ‘sing’, ‘laugh’, ‘cry’]
nouns = [‘cat’, ‘dog’, ‘tree’, ‘flower’, ‘book’, ‘computer’]

preposition = random.choice(prepositions)
verb = random.choice(verbs)
noun = random.choice(nouns)

madlib = f"I {verb} {preposition} the {noun}."

print(madlib)

风格提示:

风格指导就是要求 AI 以某种特定的风格来表达。如果没有给出风格指导的问题,ChatGPT 通常会返回一两个短段落的回答,少数需要更长的回答时会返回更多内容。
一个更详细的风格提示的例子可能是:
[问题]“以拥有20多年经验和多个博士学位的[领域]专家的风格和水平写作。在回答中优先考虑有建设性的、不太知名的建议。使用详细的例子进行解释,尽量少离题和耍幽默。“
使用风格输入提示将大大提高回答的质量!
思维链提示:
思维链(CoT)提示过程是一种最近开发的提示方法,它鼓励大语言模型解释其推理过程。下图显示了 few shot standard prompt(左)与链式思维提示过程(右)的比较。

常规提示过程 vs 思维链提示过程(Wei et al.)
思维链的主要思想是通过向大语言模型展示一些少量的 exemplars,在样例中解释推理过程,大语言模型在回答提示时也会显示推理过程。这种推理的解释往往会引导出更准确的结果。由浅入深,提升问题质量
例子:
哪种方法是更快的回家方式?
选项1:乘坐10分钟的公共汽车,然后40分钟的公共汽车,最后10分钟的火车。
选项2:乘坐90分钟的火车,然后骑行45分钟,最后10分钟的公共汽车。

选项1需要60分钟,即10+40+10

提示过程的应用

学会一些提示语句还需要在具体的实战中应用,提升工作效率

写邮件:

想象一下,有一天你生病了,不能去上班。这里有一个简单的提示,可以写一封电子邮件给你的老板,告诉他们你病了。
我的名字:克洛丝
老板的名字:凯尔希

写一封严肃、专业的电子邮件给我的老板,告诉他我今天因为生病不能上班。请简洁明了:

AI生成:
尊敬的凯尔希先生:

我是克洛丝,很抱歉地通知您,我今天因为生病不能上班。我会尽快恢复健康,并尽快回到工作岗位。

谢谢您的理解,

克洛丝

代码辅助:

作为程序员,生成代码,注释代码,debug代码都是效率很低的事情,那在ChatGPT的帮助下,我们可以做到更高效地完成这些操作

代码生成:

和上述例子相同:
假如你是一名Python程序员。
请编写python代码,生成3个单词数组(每个数组6个单词)分别包括介词、动词和名词,名词也用作直接宾语,从中选出指定的词组成一个句子,并确保可以执行。

代码注释:

你可以要求ChatGPT为你的代码添加注释,并对其进行格式化以便阅读。在你的提示词指令之后,添加三个#号,然后粘贴你想要它清理的代码:
假如你是一名Python程序员。 请将下列Python代码添加行注释并重新构造代码结构以使其易于阅读:

Debug代码:

ChatGPT不仅可以检测代码中的语法错误,还可以找到执行代码时会出现的逻辑错误。下面是一个Python脚本的例子,由于第3行的逻辑错误,在第4行最终会导致“除以零”错误。尝试使用以下简单的提示词来查找并修复错误:
假如你是一名资深的程序员,负责python程序的开发,请debug此Python代码,找出错误:

当然,提示学习有很多很多有趣的应用,我们可以使用一些公开的提示文档进行使用,从而提升工作效率

总结:

GPT不止是技术,会带来一场产业革命;AI替代不了人,但会用AI的人能替代你。

引用:

Transformer解读:https://blog.csdn.net/fs1341825137/article/details/120247499?spm=1001.2014.3001.5501
提示工程学习文档:https://www.promptingguide.ai/zh
https://learnprompting.org/zh-Hans/docs/intro
github开源项目:https://github.com/dair-ai/Prompt-Engineering-Guide
思维链提示论文:Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia,
F., Chi, E., Le, Q., & Zhou, D. (2022). Chain of Thought Prompting
Elicits Reasoning in Large Language Models.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/100406.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

龙讯旷腾PWmat已部署至曙光智算平台

编者荐语&#xff1a; 近期&#xff0c;龙讯旷腾核心产品PWmat已成功部署至曙光智算AC.sugon.com平台&#xff0c;可为用户提供包括分子建模、第一性原理计算、数据可视化等在内的完备的超级计算云服务&#xff0c;让大家能够轻松上手具有完全自主知识产权的大尺度高性能材料计…

常见前端面试之VUE面试题汇总一

1. Vue 的基本原理 当 一 个 Vue 实 例 创 建 时 &#xff0c; Vue 会 遍 历 data 中 的 属 性 &#xff0c; 用 Object.defineProperty &#xff08; vue3.0 使 用 proxy&#xff09; 将 它 们 转 为 getter/setter&#xff0c;并且在内部追踪相关依赖&#xff0c;在属性被访…

【CSS】CSS 布局——常规流布局

<h1>基础文档流</h1><p>我是一个基本的块级元素。我的相邻块级元素在我的下方另起一行。</p><p>默认情况下&#xff0c;我们会占据父元素 100%的宽度&#xff0c;并且我们的高度与我们的子元素内容一样高。我们的总宽度和高度是我们的内容 内边距…

fastapi发布web配置页面

fastapi发布web配置页面 FastAPI 是一个基于 Python 的快速 Web 开发框架&#xff0c;它提供了许多功能来简化 Web 开发过程。其中一个重要的功能是能够轻松地创建 API 文档页面。 在 FastAPI 中&#xff0c;可以使用 OpenAPI 和 Swagger 来创建 API 文档页面。下面是一个简单…

图像降采样的计算原理:F.interpolate INTER_AREA

一、F.interpolate——数组采样操作 torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode=nearest, align_corners=None, recompute_scale_factor=None) 功能:利用插值方法,对输入的张量数组进行上\下采样操作,换句话说就是科学合理地改变数组的尺…

一套基于C#语言开发的LIMS实验室信息管理系统源码

实验室信息管理系统&#xff08;LIMS)是指帮助实验室组织和管理实验数据的计算机软件系统&#xff0c;它将实验室操作有机地组织在一起&#xff0c;以满足实验室工作流程的所有要求。它能以不同的方式支持实验室的工作&#xff0c;从简单的过程(如样品采集和入库)到复杂的流程(…

微信小程序使用云存储和Markdown开发页面

最近想在一个小程序里加入一个使用指南的页面&#xff0c;考虑到数据存储和减少页面的开发工作量&#xff0c;决定尝试在云存储里上传Markdown文件&#xff0c;微信小程序端负责解析和渲染。小程序端使用到一个库Towxml。 Towxml Towxml是一个可将HTML、Markdown转为微信小程…

ESB是什么?传统ESB升级该怎么选?

ESB的由来 下面这张图&#xff0c;稍微了解些IT集成的朋友应该不陌生。 随着信息化发展不断深入&#xff0c;企业在不同的阶段引入了不同的应用、系统和软件。这些原始的应用系统互不连通&#xff0c;如同一根根独立的烟囱。 但是企业业务是流程化的&#xff0c;这就需要业务…

2023 网络建设与运维 X86架构计算机操作系统安装与管理题解

任务描述: 随着信息技术的快速发展,集团计划2023年把部分业务由原有的X86架构服务器上迁移到ARM架构服务器上,同时根据目前的部分业务需求进行了部分调整和优化。 一、X86架构计算机操作系统安装与管理 1.PC1系统为ubuntu-desktop-amd64系统(已安装,语言为英文),登录用户…

记一次布尔盲注漏洞的挖掘与分析

在上篇文章记一次由于整型参数错误导致的任意文件上传的漏洞成因的分析过程中&#xff0c;发现menu_id貌似是存在注入的。 public function upload() {$menu_id $this->post(menu_id);if ($id) {$where "id {$id}";if ($menu_id) {$where . " and menu_id…

「我的编程笔记」——记录学习中的代码、函数、概念等

文章目录 每日一句正能量前言常用的代码登录存储 特定函数MD5加密 复杂概念1. 多线程2. 集合类3. 异常处理4 泛型5 反射 特定功能1. 文件操作2. 网络通信3. 图形绘制4. 数据库操作5. 多媒体处理 后记 每日一句正能量 不管昨天、今天、明天&#xff0c;能豁然开朗就是最美好的一…

5.8.webrtc事件处理基础知识

在之前的课程中呢&#xff0c;我向你介绍了大量web rtc线程相关内容&#xff0c;今天呢&#xff0c;我们来看一下线程事件处理的基本知识。首先&#xff0c;我们要清楚啊&#xff0c;不同的平台处理事件的API是不一样的&#xff0c;这就如同我们当时创建线程是类似的&#xff0…

C#-Tolewer和ToUpper的使用

目录 简介: 好处:​ 过程: 总结&#xff1a; 简介: 字符串是不可变的&#xff0c;所以这些函数都不会直接改变字符串的内容&#xff0c;而是把修改后的字符串的值通过函数返回值的形式返回。 ToLower和ToUpper是字符串处理函数&#xff0c;用于将字符中的英文字母转换为小…

并查集 size 的优化(并查集 size 的优化)

目录 并查集 size 的优化 Java 实例代码 UnionFind3.java 文件代码&#xff1a; 并查集 size 的优化 按照上一小节的思路&#xff0c;我们把如下图所示的并查集&#xff0c;进行 union(4,9) 操作。 合并操作后的结构为&#xff1a; 可以发现&#xff0c;这个结构的树的层相对…

Spring练习---28 (用户表和角色表分析,角色列表展示,角色层和Dao层的设置,页面展示操作)

84、下面进入我们的业务层面&#xff0c;进入我们的业务层面我们先分析一个东西&#xff0c;我们要分析用户和角色的关系&#xff0c;因为我们只有在分析完用户和角色之间的关系后&#xff0c;我们才知道表的关系&#xff0c;实体的关系 85、现在我们先画一张表&#xff0c;分析…

嵌入式设备应用开发(qt界面开发)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 linux界面开发有很多的方案可以选。比如说lvgl、minigui、ftk之类的。但是,这么多年来,一直屹立不倒的还是qt。相比较其他几种方案,qt支持多个平台,这里面就包括了linux平台。此…

《Linux从练气到飞升》No.16 Linux 进程地址空间

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的…

node没有自动安装npm时,如何手动安装 npm

之前写过一篇使用 nvm 管理 node 版本的文章&#xff0c;node版本管理&#xff08;Windows&#xff09; 有时候&#xff0c;我们使用 nvm 下载 node 时&#xff0c;node 没有自动下载 npm &#xff0c;此时就需要我们自己手动下载 npm 1、下载 npm下载地址&#xff1a;&…

Docker创建 LNMP 服务+Wordpress 网站平台

Docker创建 LNMP 服务Wordpress 网站平台 一.环境及准备工作 1.项目环境 公司在实际的生产环境中&#xff0c;需要使用 Docker 技术在一台主机上创建 LNMP 服务并运行 Wordpress 网站平台。然后对此服务进行相关的性能调优和管理工作。 容器 系统 IP地址 软件 nginx centos…

数据结构算法--4堆排序

堆排序过程: >建立堆(大根堆) >得到堆顶元素&#xff0c;为最大元素 >去掉堆顶&#xff0c;将堆最后一个元素放到堆顶&#xff0c;此时可通过一次调整使堆重新有序 >堆顶元素为第二大元素 >重复步骤3&#xff0c;直到堆变空 此时是建立堆后的大根堆模型 将…