PSP - 基于开源框架 OpenFold Multimer 蛋白质复合物的结构预测与BugFix

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132410296

Multimer

AlphaFold2-Multimer 是一个基于 AlphaFold2 的神经网络模型,可以预测多链蛋白复合物的结构。该模型在训练和推理时都可以处理多链输入,并且考虑了链之间的对称性和遗传信息。

  • 对于 AlphaFold2 的损失函数、特征编码、裁剪策略和模型架构进行了多项修改,以适应多链蛋白复合物的特点。该模型还提供了一个基于预测 TM-score 的置信度评估方法。
  • 在两个数据集上进行了评估,一个是 Benchmark 2,包含 17 个低同源性的异二聚体;另一个是 Recent-PDB-Multimers,包含 4,433 个最近的蛋白复合物。该模型使用 DockQ 分数来衡量预测结构与真实结构之间的接触质量。
  • 在Benchmark 2上显著优于其他基于 AlphaFold2 或 ClusPro 的方法,在 Recent-PDB-Multimers 上也表现出较大的提升,尤其是在异构二聚体上。该模型还能够准确地预测自身的置信度,并且给出一些高质量的结构示例。

其中 OpenFold 是 AlphaFold2-Multimer 的开源实现,即:

  • Paper: OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization
  • GitHub: https://github.com/aqlaboratory/openfold

将 OpenFold 的分支切换至 multimer 分支,即可使用 Multimer 功能,目前是 Debug 版本,基本推理功能已经支持,MSA 部分支持使用 AF2 的推理结果,模型支持 DeepMind 提供的 Multimer v3 模型,其余使用 OpenFold 的相关源码。评估当前 OpenFold Multimer框架的有效性。

其他参考文章:

  • 开源可训练的蛋白质结构预测框架 OpenFold 的环境配置
  • 基于 OpenFold 训练的 Finetuning 模型与推理逻辑评估

1. 模型效果

测试序列是 H1106_A122_B114.fasta,来源于 CASP15,即:

>A
MSRIITAPHIGIEKLSAISLEELSCGLPDRYALPPDGHPVEPHLERLYPTAQSKRSLWDFASPGYTFHGLHRAQDYRRELDTLQSLLTTSQSSELQAAAALLKCQQDDDRLLQIILNLLHKV
>B
MNITLTKRQQEFLLLNGWLQLQCGHAERACILLDALLTLNPEHLAGRRCRLVALLNNNQGERAEKEAQWLISHDPLQAGNWLCLSRAQQLNGDLDKARHAYQHYLELKDHNESP

OpenFold Multimer 的 MSA 文件夹格式,与 Monomer 类似,位于 alignments 文件夹中,不同的链放入同名文件夹中,即文件夹 A 和 B,具体文件如下:

bfd_uniref_hits.a3m
mgnify_hits.sto
pdb_hits.sto
uniprot_hits.sto
uniref90_hits.sto

其中 bfd_uniref_hits.a3mmgnify_hits.stouniref90_hits.sto 是 MSA 的搜索结果,uniprot_hits.sto 用于 MSA Pairing,pdb_hits.sto 是模版搜索的结果。

测试命令,如下:

  • 因为使用已有的 AlphaFold2 Multimer 搜索的 MSA,因此 MSA 相关配置并未启用;
  • 模型使用 AF2 的 params_model_1_multimer_v3.npz,配置使用 model_1_multimer_v3

即:

python3 run_pretrained_openfold.py \
mydata/test-multimer \
af2-data-v230/pdb_mmcif/mmcif_files \
--uniref90_database_path af2-data-v230/uniref90/uniref90.fasta \
--mgnify_database_path af2-data-v230/mgnify/mgy_clusters_2022_05.fa \
--pdb70_database_path af2-data-v230/pdb70/pdb70 \
--uniclust30_database_path deepmsa2/uniclust30/uniclust30_2018_08 \
--uniref30_database_path af2-data-v230/uniref30/UniRef30_2021_03 \
--uniprot_database_path af2-data-v230/uniprot/uniprot.fasta \
--pdb_seqres_database_path af2-data-v230/pdb_seqres/pdb_seqres.txt \
--output_dir mydata/outputs-multimer/H1106_A122_B114/ \
--bfd_database_path af2-data-v230/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
--model_device "cuda:0" \
--jackhmmer_binary_path /opt/openfold/hhsuite-speed/jackhmmer \
--hmmsearch_binary_path /opt/openfold/hhsuite-speed/hmmsearch \
--hhblits_binary_path /opt/conda/envs/openfold/bin/hhblits \
--hhsearch_binary_path /opt/conda/envs/openfold/bin/hhsearch \
--kalign_binary_path /opt/conda/envs/openfold/bin/kalign \
--config_preset "model_1_multimer_v3" \
--jax_param_path af2-data-v230/params/params_model_1_multimer_v3.npz \
--max_template_date 2022-04-01

运行日志如下,整体推理速度较快:

INFO:openfold/utils/script_utils.py:Successfully loaded JAX parameters at af2-data-v230/params/params_model_1_multimer_v3.npz...
INFO:run_pretrained_openfold.py:Using precomputed alignments for A at mydata/outputs-multimer/H1106_A122_B114/alignments...
INFO:run_pretrained_openfold.py:Using precomputed alignments for B at mydata/outputs-multimer/H1106_A122_B114/alignments...
INFO:openfold/utils/script_utils.py:Running inference for A-B...
INFO:openfold/utils/script_utils.py:Inference time: 44.876936707645655
INFO:run_pretrained_openfold.py:Output written to mydata/outputs-multimer/H1106_A122_B114/predictions/A-B_model_1_multimer_v3_unrelaxed.pdb...
INFO:run_pretrained_openfold.py:Running relaxation on mydata/outputs-multimer/H1106_A122_B114/predictions/A-B_model_1_multimer_v3_unrelaxed.pdb...
INFO:openfold/utils/script_utils.py:Relaxation time: 26.89977646060288
INFO:openfold/utils/script_utils.py:Relaxed output written to mydata/outputs-multimer/H1106_A122_B114/predictions/A-B_model_1_multimer_v3_relaxed.pdb...

与 AlphaFold2 Multimer 的预测结果 unrelaxed_model_1_multimer_v3_pred_0.pdb,作为对比,效果在 H1106_A122_B114 中,略有提升,即:

[Info] {'TMScore': 0.8824, 'RMSD(local)': 1.92, 'Align.Len.': 173, 'DockQ': 0.613}
[Info] {'TMScore': 0.8803, 'RMSD(local)': 2.12, 'Align.Len.': 174, 'DockQ': 0.600}

其中,黄色是 Reference,蓝色是 AlphaFold2 Multimer 的预测结果,粉色是 OpenFold Multimer 的预测结果,如下:

Multimer

2. Bugfix

Bug: 在MSA 序列 (sequence) 中,存在无法解析的 "." 关键字,导致 KeyError,即:

Traceback (most recent call last):File "run_pretrained_openfold.py", line 477, in <module>main(args)File "run_pretrained_openfold.py", line 291, in mainfeature_dict = generate_feature_dict(File "run_pretrained_openfold.py", line 134, in generate_feature_dictfeature_dict = data_processor.process_fasta(File "openfold/data/data_pipeline.py", line 1167, in process_fastachain_features = self._process_single_chain(File "openfold/data/data_pipeline.py", line 1116, in _process_single_chainchain_features = self._monomer_data_pipeline.process_fasta(File "openfold/data/data_pipeline.py", line 860, in process_fastamsa_features = self._process_msa_feats(alignment_dir, input_sequence, alignment_index)File "openfold/data/data_pipeline.py", line 818, in _process_msa_featsmsa_features = make_msa_features(File "openfold/data/data_pipeline.py", line 232, in make_msa_features[residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence]File "openfold/data/data_pipeline.py", line 232, in <listcomp>[residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence]
KeyError: '.'

源码位于 openfold/data/data_pipeline.py 中,即:

def _process_msa_feats(self,alignment_dir: str,input_sequence: Optional[str] = None,alignment_index: Optional[str] = None
) -> Mapping[str, Any]:msas = self._get_msas(alignment_dir, input_sequence, alignment_index)msa_features = make_msa_features(msas=msas)return msa_features

定义日志 logger,即:

import logging
logging.basicConfig()
logger = logging.getLogger(__file__)
logger.setLevel(level=logging.INFO)

定位 sequence,来源于 pdb_hits.sto 模版搜索结果,即:

INFO:openfold/data/data_pipeline.py:[CL] Error sequence: .MALLPDGQSI.EPHISR...LY...P....ERL.....ADRALLDFATPHR..GFHDLLRP.VD..FHQAMQ...G.LRSV.LAE.....GQSPELRAAA..ILLEQM.HADEQLMQMTLHLLHKV

原因:在 Multimer 中,Template 的搜索结果是 pdb_hits.sto,误解析成 MSA 文件,排除即可,同时,增加 pdb_hits.sto 的解析函数。

相关代码,各有 2 处,都需要修改,之前验证的是hmm_output,现修改成pdb_hits,即:

# ...
elif ext == ".sto" and "pdb_hits" not in filename:msa = parsers.parse_stockholm(read_msa(start, size))
# ...
elif name == "pdb_hits.sto":hits = parsers.parse_hmmsearch_sto(read_template(start, size),input_sequence,)all_hits[name] = hits
# ...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/101147.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

回归预测 | MATLAB实现SCN随机配置网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现SCN随机配置网络多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现SCN随机配置网络多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基本介绍程序设计参考资料 效果一览 基本…

情报与GPT技术大幅降低鱼叉攻击成本

邮件鱼叉攻击&#xff08;spear phishing attack&#xff09;是一种高度定制化的网络诈骗手段&#xff0c;攻击者通常假装是受害人所熟知的公司或组织发送电子邮件&#xff0c;以骗取受害人的个人信息或企业机密。 以往邮件鱼叉攻击需要花费较多的时间去采集情报、深入了解受…

第三方软件测试机构可提供哪些测试服务?又有哪些注意事项?

软件测试是使用技术的手段&#xff0c;尽可能发现并改正软件中的错误&#xff0c;提高软件的可靠性及需求性&#xff0c;保障软件质量的过程。该过程也是软件开发完必不可少的一步&#xff0c;但国内还是有一些软件企业存在着“重开发&#xff0c;轻测试”的现象&#xff0c;上…

使用docker-maven-plugin插件构建镜像并推送至私服Harbor

前言 如下所示&#xff0c;建议使用 Dockerfile Maven 插件&#xff0c;但该插件也停止维护更新了。因此先暂时使用docker-maven-plugin插件。 一、开启Docker服务器的远程访问 1.1 开启2375远程访问 默认的dokcer是不支持远程访问的&#xff0c;需要加点配置&#xff0c;开…

php函数

函数是什么&#xff1f; 函数(function)是一段完成指定任务的已命名代码块。函数可以遵照给它的一组值或参数完成特定的任务&#xff0c;并且可能返回一个值。在PHP中有两种函数&#xff1a;自定义函数与系统函数。 函数就是可以完成固定功能的语句或语句集合&#xff0c;可以单…

Mac发现有的软件不能上网的破解之法

1、Mac上打开终端 terminal &#xff0c;获取 root 权限。 sudo -i 2、编辑 hosts 文件 vim /private/etc/hosts 3、找到被禁止软件的数据请求域名&#xff0c;然后删除相关行&#xff0c;快捷件dd&#xff0c;然后:wq保存退出 比如百度 127.0.0.1 pan.baidu.com ##sec 印…

前端编辑页面修改后和原始数据比较差异

在软件研发过程中&#xff0c;会遇到很多编辑页面&#xff0c;有时编辑页面和新增页面长的基本上一样&#xff0c;甚至就是一套页面供新增和编辑共用。编辑页面的场景比较多&#xff0c;例如&#xff1a; 场景一、字段比较多&#xff0c;但实际只修改了几个字段&#xff0c;如…

【网络层协议】ARP攻击与欺骗常见的手段以及工作原理

个人主页&#xff1a;insist--个人主页​​​​​​ 本文专栏&#xff1a;网络基础——带你走进网络世界 本专栏会持续更新网络基础知识&#xff0c;希望大家多多支持&#xff0c;让我们一起探索这个神奇而广阔的网络世界。 目录 一、ARP攻击的常见手段 第一种&#xff1a;IP…

罗勇军 →《算法竞赛·快冲300题》每日一题:“超级骑士” ← DFS

【题目来源】http://oj.ecustacm.cn/problem.php?id1810http://oj.ecustacm.cn/viewnews.php?id1023https://www.acwing.com/problem/content/3887/【题目描述】 现在在一个无限大的平面上&#xff0c;给你一个超级骑士。 超级骑士有N种走法&#xff0c;请问这个超级骑士能否…

python刷小红书流量(小眼睛笔记访问量),metrics_report接口,原理及代码,以及x-s签名验证2023-08-21

一、什么是小眼睛笔记访问量 如下图所示&#xff0c;为笔记访问量。 二、小眼睛笔记访问量接口 1、url https://edith.xiaohongshu.com/api/sns/web/v1/note/metrics_report 2、payload data{"note_id": note_id,"note_type": note_type,"report_t…

SOFARPC(笔记)

文章目录 一、快速开始1.1 SOFARPC1.2 基于SOFABoot 二、注册中心三、通讯协议2.1 Bolt基本发布调用方式超时控制协议泛化调用序列化协议自定义线程池 2.2 RESTful基本使用 2.3 其他协议四、架构 附录 官方样例下载地址-sofa-boot-guides 可查看 SOFARPC 方式快速入门 一、快…

HTML5+CSS3+JS小实例:环形文字动画特效

实例:环形文字动画特效 技术栈:HTML+CSS+JS 效果: 源码: 【html】 <!DOCTYPE html> <html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"><meta name="viewport" content=&quo…

深度解读波卡 2.0:多核、更有韧性、以应用为中心

本文基于 Polkadot 生态研究院整理&#xff0c;有所删节 随着波卡 1.0 的正式实现&#xff0c;波卡于 6 月 28 日至 29 日在哥本哈根举办了年度最重要的会议 Polkadot Decoded 2023&#xff0c;吸引了来自全球的行业专家、开发者和爱好者&#xff0c;共同探讨和分享波卡生态的…

C语言好题解析(四)

目录 选择题一选择题二选择题三选择题四选择题五编程题一 选择题一 已知函数的原型是&#xff1a; int fun(char b[10], int *a); 设定义&#xff1a; char c[10];int d; &#xff0c;正确的调用语句是&#xff08; &#xff09; A: fun(c,&d); B: fun(c,d); C: fun(&…

Hbuilder打包后推流拉流都没有画面

背景&#xff1a;我在使用数据线连接手机测试的时候&#xff0c;推流拉流都是正常的额&#xff0c;云打包后&#xff0c;跳转到视频接听页面&#xff0c;就是空白的。 解决方法&#xff1a; manifest.json->APP模块配置->直播推流权限勾上&#xff08;推流&#xff09; 还…

leetcode 516. 最长回文子序列(JAVA)题解

题目链接https://leetcode.cn/problems/longest-palindromic-subsequence/description/?utm_sourceLCUS&utm_mediumip_redirect&utm_campaigntransfer2china 目录 题目描述&#xff1a; 暴力递归&#xff1a; 动态规划&#xff1a; 题目描述&#xff1a; 给你一个…

docker之Consul环境的部署

目录 一、Docker consul的介绍 1.1 template模板(更新) 1.2 registrator&#xff08;自动发现&#xff09; 1.3 agent(代理) 二.consul的工作原理 三.Consul的特性 四.Consul的使用场景 五.搭建Consul的集群 5.1 需求 5.2 部署consul 5.3 主服务器部署[192.168.19.10…

RunnerGo性能测试时如何从数据库获取数据

我们在做性能测试或者场景测试时往往需要从数据库中获取一些真实的系统数据让我们配置的场景更加贴合实际。而RunnerGo也是在最近的大版本更新中推出连接数据库功能&#xff0c;本篇文章也给大家讲解一下具体的操作方法和实际应用场景。 配置数据库 首先进入RunnerGo页面&…

家庭装修设计施工团队进度小程序开发演示

传统装修企业获客难、获客成本高、竞争激烈&#xff0c;我们也是基于整个装修市场整体的需求&#xff0c;从用户角度出发帮助装修设计企业设计制作这款小程序。可以让传统装修企业搭上互联网的快车&#xff0c;形成线上获客裂变&#xff0c;降低获客成本提高客户信任度和签单率…

在mac下,使用Docker安装达梦数据库

前言&#xff1a;因为业务需要安装达梦数据库 获取官网下载tar包&#xff08;达梦官网的下载页面https://www.dameng.com/list_103.html&#xff09;&#xff0c;或者通过命令 一、下载tar包 命令下载&#xff1a;wget -O dm8_docker.tar -c https://download.dameng.com/eco/…