论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读

论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读

今天带来的是由微软Edward Hu等人完成并发表在ICLR 2022上的论文《LoRA: Low-Rank Adaptation of Large Language Models》,论文提出了大模型 tuning 框架 LoRALow-Rank Adaptation)。

论文地址:https://openreview.net/pdf?id=nZeVKeeFYf9
附录下载地址:https://openreview.net/attachment?id=nZeVKeeFYf9&name=supplementary_material
代码地址:https://github.com/microsoft/LoRA

Background

一些术语介绍:

· Intrinsic Dimension(本征维度):An objective function’s intrinsic dimensionality describes the minimum dimension needed to solve the optimization problem it defines to some precision level. 是指在pre-trained LLM中,对于下游的tuning工作,实际上不需要对模型所有参数都进行更新,在保证某种精度(如90%)的要求下,可以只更新一部分就可以了(可称为 d 90 d_{90} d90)。

few-shot learning:少样本学习。借助于少样本学习,大模型在特定下游任务的训练过程中,只需要少数的特定任务数据就可以发挥不错的性能。

Prompt Engineering:提示工程。这是 LLM 在 NLP 应用中的特有应用,类似于特征工程,是一种需要专家背景知识,通过组织input的格式,风格等内容,使得输入内容对LLM能够具备更好的促进作用。

Adaptation:适应。也就是大模型对特定下游任务的tuning,使其能够在下游任务中性能更好。

Introduciton

本文提出的主要出发点在于 大模型 的训练模式,即先通过对 大量的 task-independent 语料的预训练,然后再在特定任务上进行精调 fine-tuning,使得模型能够在特定的下游任务中展现较好的表现。

这里就出现一个问题,大模型无论是在存储还是计算上,都是很大的,需要很大的算力和存储。Fine-tuning所有参数就会很费时费力。举例来说,GPT-3 175B总共包含175 billion个参数,也就是1750亿个,fine-tuning所有层,所有Transformer中的Q K V 和 output 矩阵加上 bias,可想而知是一个很大的开销。如何解决这个问题构成本文的 Motivation。

当然已经有诸多此类问题的解决方案。例如,Adapter Layer,也就是在Transformer中插入了两层Adapter Layer 来适应下游任务,只更新Adapter Layer 中的参数,原来的Transformer中的参数 不进行更新。这类模型的问题在于,Adapter Layer 和原来的大模型参数是从输入到输出上下夹在一起的(类似于汉堡),参数计算时必须从输入到输出一层一层进行。那么模型在推理的时候,就必然涉及到等上一层计算完才可以计算下一层,那么就带来了模型的延迟,影响模型体验。

作者提出了低秩矩阵乘法作为任意矩阵 W W W的 特定增量 Δ W \Delta W ΔW,通过只更新 Δ W \Delta W ΔW 的方式减小模型开销的同时,保住模型性能。

是的,模型就是这么“简单”,但是一方面模型的切入点非常犀利;另一方面模型性能不错且带来了巨大的 tuning 节省,让贫穷的学生党探索大模型时能够更自如一些;同时,本文的实验部分也非常充分(附录中),在不同benchmark中的表现都能够佐证LoRA模型的有效性。

在这里插入图片描述

Problem Statement

首先是问题形式化,对于fine-tuning,就是把预训练完成的所有参数checkpoint进行存储dump,在精调阶段,将所有参数初始化为dump出来的value,以此作为参数更新的起始点,完成模型优化。表示如下:

max ⁡ Φ ∑ ( x , y ) ∈ Z ∑ t = 1 ∣ y ∣ log ⁡ ( P Φ ( y t ∣ x , y < t ) ) (1) \max _{\Phi} \sum_{(x, y) \in \mathcal{Z}} \sum_{t=1}^{|y|} \log \left(P_{\Phi}\left(y_{t} \mid x, y_{<t}\right)\right) \tag{1} Φmax(x,y)Zt=1ylog(PΦ(ytx,y<t))(1)
如上所示,通过对下游任务数据集 Z \mathcal{Z} Z 进行模型所有参数 Φ \Phi Φ 的更新。如果 Φ {\Phi} Φ 很大,那么fine-tuning 就会很麻烦。

对此,作者提出了只更新 task-specific 的 新引入的 少量的参数 Δ Φ = Δ Φ ( Θ ) \Delta \Phi = \Delta \Phi(\Theta) ΔΦ=ΔΦ(Θ),完成模型的tuning。这里 Θ \Theta Θ 是新参数,而且维度相比较于原LLM模型很小( ∣ Θ ∣ ≪ ∣ Φ 0 ∣ |\Theta| \ll |\Phi_{0}| ∣Θ∣Φ0。作者指出,LoRA能够将需要更新的参数数量缩小到万分之一的地步。

max ⁡ Θ ∑ ( x , y ) ∈ Z ∑ t = 1 ∣ y ∣ log ⁡ ( p Φ 0 + Δ Φ ( Θ ) ( y t ∣ x , y < t ) ) (2) \max _{\Theta} \sum_{(x, y) \in \mathcal{Z}} \sum_{t=1}^{|y|} \log \left(p_{\Phi_{0}+\Delta \Phi(\Theta)}\left(y_{t} \mid x, y_{<t}\right)\right) \tag{2} Θmax(x,y)Zt=1ylog(pΦ0+ΔΦ(Θ)(ytx,y<t))(2)

Methodology

LoRA的具体设计实际上用两句话可以完成概括,(1)引入低秩矩阵进行 Δ W \Delta W ΔW 的计算;(2)选择哪些矩阵进行引入。

Δ W \Delta W ΔW 的选择

对于 Δ W \Delta W ΔW 的计算,如下所示:
h = W 0 x + Δ W x = W 0 x + B A x (3) h=W_{0} x+\Delta W x=W_{0} x+B A x \tag{3} h=W0x+ΔWx=W0x+BAx(3)
即,针对Transformer中的矩阵,加入一个 B ⋅ A B \cdot A BA 的操作,其中, B B B A A A 共享的那个维度是 r r r,远小于 输入维度( x x x 的维度)和 输出维度 ( h h h 的维度)。

W W W的选择

Transformer中的几个矩阵可以分为四类,这里分别表示为Q/K/V/O,分别对应到query/key/value/output。作者在附录中加入了对矩阵的选择(所有可训练参数总数18M, 18 M / 175 B ≈ 1 / 10 K 18M/175B \approx 1/10K 18M/175B1/10K),可以看到对QKVO所有矩阵都进行更新,性能最佳。但是在文中,作者普遍使用了只更新QV的方式,并说QV表现更好,这里不太明白。

Applying Choices

总结

本文simple but effective,值得一看!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/102321.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

交叉编译 libzdb

参考博客&#xff1a;移植libzdb3.2.2到arm_configure: error: no available database found or s_酣楼驻海的博客-CSDN博客 编译时间 2023-08-23 libzdb 下载&#xff1a; 源码访问如下&#xff1a; https://bitbucket.org/tildeslash/libzdb/src/master/ git 下载链接 …

低代码开发ERP:精打细算,聚焦核心投入

企业数字化转型已经成为现代商业环境中的一项关键任务。如今&#xff0c;企业面临着日益激烈的竞争和不断变化的市场需求。在这样的背景下&#xff0c;数字化转型不仅是企业生存的必然选择&#xff0c;也是取得竞争优势和实现可持续发展的关键因素。 在数字化转型的过程中&…

[oneAPI] 基于BERT预训练模型的英文文本蕴含任务

[oneAPI] 基于BERT预训练模型的英文文本蕴含任务 Intel DevCloud for oneAPI 和 Intel Optimization for PyTorch基于BERT预训练模型的英文文本蕴含任务语料介绍数据集构建 模型训练 结果参考资料 比赛&#xff1a;https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0…

3D数据转换工具HOOPS Exchange概览

HOOPS Exchange SDK是一组C软件库&#xff0c;使开发团队能够快速为其应用程序添加可靠的2D和3D CAD导入和导出功能。这允许访问广泛的数据&#xff0c;包括边界表示&#xff08;BREP&#xff09;、产品制造信息&#xff08;PMI&#xff09;、模型树、视图、持久ID、样式、构造…

使用 MATLAB 和 Simulink 对雷达系统进行建模和仿真

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Redis多机实现

Background 为啥要有多机--------------1.容错 2.从服务器分担读压力。 主从结构一大难题------------如何保障一致性&#xff0c;对这个一致性要求不是很高&#xff0c;因为redis是用来做缓存的 同时我们要自动化进行故障转移-------哨兵机制&#xff0c;同时哨兵也可能cra…

使用mysql:5.6和 owncloud 镜像,构建一个个人网盘。

1、使用mysql:5.6和 owncloud 镜像&#xff0c;构建一个个人网盘。 拉取mysql:5.6和owncloud的镜像和生成实例 [rootlocalhost ~]# docker pull mysql:5.6 [rootlocalhost ~]# docker pull ownclound [rootlocalhost ~]# docker run -d --name mydb1 --env MYSQL_ROOT_PASSWO…

智慧工地:安防监控EasyCVR智慧工地视频监管风险预警平台的应用

智慧工地方案是一种结合现代化技术与工地管理实践的创新型解决方案。它通过实时监控、数据分析、人工智能等技术手段&#xff0c;使工地管理更加高效、智能化。在建设智慧工地的过程中&#xff0c;除了上述提到的利用物联网技术实现设备互联、数据采集及分析以外&#xff0c;还…

python - 编程中【工厂模式】和【单例模式】区别以及代码示例详解

一. 概念 工厂模式和单例模式都是面向对象编程中常用的设计模式。 工厂模式&#xff08;FactoryPattern&#xff09;&#xff1a;是一种创建型模式&#xff0c;它提供了一种方法来创建对象&#xff0c;而不需要暴露对象的创建逻辑。这种模式通过定义一个工厂类&#xff0c;通…

远程端口转发 实践 如何将物理机某一端口的服务转发到vps上,使得外网能访问到

以本机1470端口&#xff08;我的sqli-labs&#xff09;与vps的9023端口为例。 SSH基本的连接命令是&#xff1a; ssh usernamehostname这里牵扯到了两台主机&#xff0c;一是执行命令、运行SSH客户端的主机&#xff0c;我们称为本地主机A【Host A】&#xff1b;二是接收连接请…

小程序运营方式有哪些?如何构建小程序运营框架?

​如今&#xff0c;每个企业基本都做过至少一个小程序&#xff0c;但由于小程序本身不具备流量、也很少有自然流量&#xff0c;因此并不是每个企业都懂如何运营小程序。想了解小程序运营方式方法有哪些&#xff1f; 在正式运营小程序前&#xff0c;了解小程序的功能与企业实际经…

Heikin Ashi最简单的一种烛台移动平均线

是不是每次进行交易的时候&#xff0c;市场上的各种新闻真真假假&#xff0c;搞的交易者每次都分不清楚&#xff0c;今天FPmarkets澳福给各位投资者推荐一种交易策略——“Heikin Ashi” “Heikin Ashi”只通过四个参数构建&#xff1a;开盘价、收盘价、最高价和最低价(最大和…

ssm汽车养护管理系统源码和论文

ssm汽车养护管理系统038 开发工具&#xff1a;idea 数据库mysql5.7 数据库链接工具&#xff1a;navcat,小海豚等 技术&#xff1a;ssm 开题报告内容&#xff1a;&#xff08;研究现状、目的意义&#xff1b;基本内容、研究方法、参考文献等。&#xff09; 研究现状 国外…

chapter 3 Free electrons in solid - 3.1 自由电子模型

3.1 自由电子模型 Free electron model 研究晶体中的电子&#xff1a; 自由电子理论&#xff1a;不考虑离子实能带理论&#xff1a;考虑离子实&#xff08;周期性势场&#xff09;的作用 3.1.1 德鲁德模型 Drude Model - Classical Free Electron Model (1)德鲁德模型 德鲁…

golang 协程的实现原理

核心概念 要理解协程的实现, 首先需要了解go中的三个非常重要的概念, 它们分别是G, M和P, 没有看过golang源代码的可能会对它们感到陌生, 这三项是协程最主要的组成部分, 它们在golang的源代码中无处不在. G (goroutine) G是goroutine的头文字, goroutine可以解释为受管理的…

React(7)

1.React Hooks 使用hooks理由 1. 高阶组件为了复用&#xff0c;导致代码层级复杂 2. 生命周期的复杂 3. 写成functional组件,无状态组件 &#xff0c;因为需要状态&#xff0c;又改成了class,成本高 1.1 useState useState();括号里面处的是初始值&#xff1b;返回的是一个…

2023年大数据与区块链国际会议 | EI、Scoups检索

会议简介 Brief Introduction 2023年大数据与区块链国际会议&#xff08;ICBDB 2023&#xff09; 会议时间&#xff1a;2023年11月17 -19日 召开地点&#xff1a;中国西安 大会官网&#xff1a;www.icobdb.org 2023年大数据与区块链国际会议&#xff08;ICBDB 2023&#xff09;…

论文及代码详解——Restormer

文章目录 论文详解Overall pipelineMulti-Dconv Head Transposed AttentionGated-Dconv Feed-Forward Network 代码详解 论文&#xff1a;《Restormer: Efficient Transformer for High-Resolution Image Restoration》 代码&#xff1a;https://github.com/swz30/Restormer 论…

Jmeter常用线程组设置策略

一、前言 ​ 在JMeter压力测试中&#xff0c;我们时常见到的几个场景有&#xff1a;单场景基准测试、单场景并发测试、单场景容量测试、混合场景容量测试、混合场景并发测试以及混合场景稳定性测试 在本篇文章中&#xff0c;我们会用到一些插件&#xff0c;在这边先给大家列出&…

Git问题:解决“ssh:connect to host github.com port 22: Connection timed out”

操作系统 Windows11 使用Git IDEA 连接方式&#xff1a;SSH 今天上传代码出现如下报错&#xff1a;ssh:connect to host github.com port 22: Connection timed out 再多尝试几次&#xff0c;依然是这样。 解决 最终发现两个解决方案&#xff1a;&#xff08;二选一&#xf…