【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 详细建模过程解析及代码实现

相关信息

(1)建模思路

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 详细建模过程解析及代码实现

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 详细建模方案及代码实现

【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 建模方案及代码实现

(2)完整论文

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用 42页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】 B 题 城市轨道交通列车时刻表优化问题 42页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 赛后总结之31页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】D 题 航空安全风险分析和飞行技术评估问题 27页论文及代码

【2023 年第十三届 MathorCup 高校数学建模挑战赛】A 题 量子计算机在信用评分卡组合优化中的应用

请添加图片描述
更新信息:2023-4-15 更新了代码

1 题目

在银行信用卡或相关的贷款等业务中,对客户授信之前,需要先通过 各种审核规则对客户的信用等级进行评定,通过评定后的客户才能获得信 用或贷款资格。规则审核过程实际是经过一重或者多重组合规则后对客户 进行打分,这些规则就被称为信用评分卡,每个信用评分卡又有多种阈值 设置(但且只有一个阈值生效),这就使得不同的信用评分卡在不同的阈值 下,对应不同的通过率和坏账率,一般通过率越高,坏账率也会越高,反 之,通过率越低,坏账率也越低。对银行来说,通过率越高,通过贷款资格审核的客户数量就越多,相 应的银行获得的利息收入就会越多,但高通过率一般对应着高坏账率,而 坏账意味着资金的损失风险,因此银行最终的收入可以定义为:最终收入 = 贷款利息收入 - 坏账损失

下表举例 3 个不同的信用评分卡,可以看到每种信用评分卡有 10 个阈值,每种阈值对应不同的坏账率和通过率:

在这里插入图片描述

赛题说明 1:流程简化及示例

由于银行场景的复杂性,往往需要采用选择多个不同的信用评分卡进 行组合来实现最佳的风险控制策略。而实际中的信用评分卡组合是一个非 常复杂的过程,为便于建模,我们将该问题进行做如下简化(本简化只适 用本次比赛赛题,不能完全代表实际场景)。假设贷款资金为 1000000 元,银行贷款利息收入率为 8%,并以上面列举的三个信用评分卡作为选定的信用评分卡组合来测算银行最终收入。由于每一信用评分卡有且只可选择 1 个阈值,假设信用评分卡 1 的阈值设置为 8,则通过表格可知,对应通过率为 70%,坏账率为 4.00%,信用评分卡 2 的阈值设置为 6,则通过率为 50%,坏账率为 2.70%,信用评分卡3 的阈值设置为 7,则通过率为 62%,坏账率为 3.70%。例如如果我们选择三重信用卡组合策略,那么这三种信用评分卡组合 后的总通过率为所有信用评分卡通过率相乘,即:0.7×0.5×0.62 = 0.217。总坏账率为三种信用评分卡对应坏账率的平均值,即:1/3×(0.04+0.027+0.037) = 0.0367。基于以上条件可求得,本次贷款利息收入为:贷款资金×利息收入率×总通过率×(1-总坏账率),即:1000000×0.08×(0.7×0.5×0.62) ×(1-1/3×(0.04+0.027+0.037)) =16758.18(元)。由坏账带来的坏账损失为:贷款资金×总通过率×总坏账率,即:1000000×(0.7×0.5×0.62) ×(1/3×(0.04+0.027+0.037))=7522.666(元)。那么银行的最终收入为:贷款利息收入**-**坏账损失,即

16758.18-7522.666 = 9235.514 (元)

由此可见,选择不同的信用评分卡,不同的阈值组合,会给银行带来 不同的收入与损失,由此决定银行最终收入。因此,银行的目标是选择最 合理的信用评分卡组合以及其阈值,使得银行最终收入最多。

赛题说明2:QUB 模型简介

QUBO 模型是指二次无约束二值优化(Quadratic Unconstrained Binary Optimization)模型,它是一种用于解决组合优化问题的数学模型。在QUBO模型中,需要将问题转化为一个决策变量为二值变量,目标函数是一个二 次函数形式优化模型。

QUBO 模型可以运行在量子计算机硬件上,通过量子计算机进行毫秒级的加速求解。这种模型和加速方式在未来各行业中将得到广泛的实际应 用。因此现阶段研究基于 QUBO 模型的量子专用算法十分有应用价值。例如典型的图着色、旅行商问题、车辆路径优化问题等,都可以转化为 QUBO 模型并借助于量子计算机求解。

相关的 QUBO 的转化方法与例子可参考附件 2 中的参考文献。

赛题说明3:赛题数据

附件 1 中共包含 100 张信用评分卡,每张卡可设置 10 种阈值之一,并对应各自的通过率与坏账率共 200 列,其中 t_1 代表信用评分卡 1 的通过率共 10 项,h_1 代表信用评分卡 1 的坏账率共 10 项,依次类推 t_100 代表信用评分卡 100 的通过率,h_100 代表信用评分卡 100 的坏账率。根据上面的赛题说明及附件 1 中的数据,请你们团队通过建立数学模型完成如下问题 1 至问题 3。

问题 1:在 100 个信用评分卡中找出 1 张及其对应阈值,使最终收入

最多,请针对该问题进行建模,将该模型转为 QUBO 形式并求解。

问题 2:假设赛题说明 3 目前已经选定了数据集中给出的信用评分卡1、信用评分卡 2、信用评分卡 3 这三种规则,如何设置其对应的阈值,使最终收入最多,请针对该问题进行建模,将模型转为 QUBO 形式并求解。

问题 3:从所给附录中 100 个信用评分卡中任选取 3 种信用评分卡, 并设置合理的阈值,使得最终收入最多,请针对该问题进行建模,并将模 型转为 QUBO 形式并求解。

2 方案解析

2.1 问题一

这是一个组合优化问题,需要在100张信用评分卡中找到最优的一张卡和对应的阈值,使得最终收入最多。因为每张卡都有10个阈值选项,因此总共有1000个可能的选择。为了将该问题转化为QUBO模型,需要定义一组变量,表示选择第i张卡的第j个阈值时是否为1,其中i∈[1,100], j∈[1,10]。另外,需要定义一个目标函数来最大化最终收入。目标函数的形式为:
m a x i m i z e : ∑ i ∑ i r i j x i j maximize:\sum_i \sum_i r_{ij} x_{ij} maximizeiirijxij
其中 r i j r_{ij} rij是选择第i张卡的第j个阈值时的收入。 x i j x_{ij} xij表示选择第i张卡的第j个阈值时的变量。

为了使得选择的方案符合题意,需要加入约束条件。首先,每张卡只能选择一个阈值,因此需要添加如下约束:
∑ j x i j = 1 i = 1 , 2 , . . . , 100 \sum_j x_{ij} = 1 \quad i = 1,2,...,100 jxij=1i=1,2,...,100
其次,只能选择一个卡和对应的阈值,因此需要添加如下约束:
∑ i ∑ j x i j = 1 \sum_i \sum_j x_{ij} = 1 ijxij=1
最后,
。。。。略,请下载完整文档

2 问题二

对模型进行线性化,将二次项转化为一次项,然后将模型转化为 QUBO 形式。具体地,我们定义 x_{ij}表示信用评分卡 i中选择第 j个阈值,其中 i ∈ 1 , 2 , 3 , j ∈ 1 , 2 , … , 10 i \in {1, 2, 3}, j \in {1, 2, \dots, 10} i1,2,3,j1,2,,10 y i y_i yi 表示是否选择信用评分卡i,其中 i ∈ 1 , 2 , 3 i \in {1, 2, 3} i1,2,3 z j z_j zj 表示是否选择第 j个阈值,其中 j ∈ 1 , 2 , … , 10 j \in {1, 2, \dots, 10} j1,2,,10。同时,我们引入一个变量r表示总收入。

根据前面的分析,可以得到以下约束条件:

每个信用评分卡最多选择一个阈值,即

∑ j = 1 10 x i j ≤ 1 , i ∈ { 1 , 2 , 3 } ∑_{j=1}^{10} x_{ij} \leq 1, i \in \{1,2,3\} j=110xij1,i{1,2,3}

选择某个信用评分卡的同时必须选择该信用评分卡对应的一个阈值,即

x i j ≤ y i , i ∈ { 1 , 2 , 3 } , j ∈ { 1 , 2 , … , 10 } x_{ij} \leq y_i, i \in \{1,2,3\}, j \in \{1,2,\dots,10\} xijyi,i{1,2,3},j{1,2,,10}

总共只能选择三个信用评分卡,即

∑ i = 1 3 y i = 3 ∑_{i=1}^{3} y_i = 3 i=13yi=3
选择某个阈值的同时必须选择对应的信用评分卡,即

x 1 j + x 2 j + x 3 j − z j = 0 , j ∈ { 1 , 2 , … , 10 } x_{1j} + x_{2j} + x_{3j} - z_j = 0, j \in \{1,2,\dots,10\} x1j+x2j+x3jzj=0,j{1,2,,10}
根据信用评分卡的阈值和数据集中给出的通过率和坏账率,计算收入,即

r = 200 ∑ i = 1 3 ∑ j = 1 10 x i j ( t i − h i ) z j r = 200\sum_{i=1}^{3} \sum_{j=1}^{10} x_{ij} (t_i - h_i) z_j r=200i=13j=110xij(tihi)zj

其中第 4 个约束条件是一个等式约束,我们可以将其转化为两个不等式约束:

x 1 j + x 2 j + x 3 j ≤ 1 + z j , j ∈ { 1 , 2 , … , 10 } x 1 j + x 2 j + x 3 j ≥ 1 − 2 ( 1 − z j ) , j ∈ { 1 , 2 , … , 10 } x_{1j} + x_{2j} + x_{3j} \leq 1 + z_j, j \in \{1,2,\dots,10\} \\ x_{1j} + x_{2j} + x_{3j} \geq 1 - 2(1 - z_j), j \in \{1,2,\dots,10\} x1j+x2j+x3j1+zj,j{1,2,,10}x1j+x2j+x3j12(1zj),j{1,2,,10}
接下来,我们将每个约束条件转化为 QUBO 表达式。首先,我们考虑将约束条件中的不等式转化为等式。对于一个不等式 a ≤ b a \leq b ab,我们可以引入一个非负变量 s s s,并将其转化为等式 a + s = b a + s= b a+s=b,其中 s s s 表示两边差的绝对值。这样,我们就可以将所有约束条件转化为等式的形式,从而将模型转化为 QUBO 形式。

具体地,我们可以将目标函数表示为:
H = A r + ∑ i = 1 3 ∑ j = 1 10 B i x i j + ∑ j = 1 10 C j z j + ∑ i = 1 3 D i y i + ∑ i = 1 3 ∑ j = 1 10 ∑ k = 1 10 E i j k x i j x i k + ∑ i = 1 3 ∑ j = 1 9 ∑ k = j + 1 10 F i j k x i j x i k H = A r + ∑_{i=1}^3 ∑{j=1}^{10} B_i x_ij + ∑_{j=1}^{10} C_j z_j + ∑{i=1}^3 D_i y_i + ∑_{i=1}^3 ∑_{j=1}^{10} ∑ _{k=1}^{10} E_{ij}^k x_{ij} x_{ik} + ∑ _{i=1}^3 ∑ _{j=1}^9 ∑_{k=j+1}^{10} F_{ij}^k x_{ij} x_{ik} H=Ar+i=13j=110Bixij+j=110Cjzj+i=13Diyi+i=13j=110k=110Eijkxijxik+i=13j=19k=j+110Fijkxijxik
其中
。。。。略,请下载完整文档

2.3 问题三

首先,我们定义三个二元变量 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3,表示我们是否选择了每个评分卡。

其次,我们需要定义一个阈值 T T T,表示最小的信用评分得分,只有评分高于此阈值的评分卡才会被选择。

最后,我们需要定义一个目标函数,表示我们希望最大化的收入。在这个问题中,我们可以将收入定义为三个选择的信用评分卡的得分之和。

因此,我们的目标是将以下函数最大化:
f ( x 1 , x 2 , x 3 ) = s 1 x 1 + s 2 x 2 + s 3 f(x1,x2,x3)=s1x1+s2x2+s3 f(x1,x2,x3)=s1x1+s2x2+s3
其中 s 1 , s 2 , s 3 s_1, s_2, s_3 s1,s2,s3 分别表示我们选择的三个信用评分卡的得分。

接下来,我们需要定义约束条件。首先,我们需要确保只选择了三个信用评分卡:
x 1 + x 2 + x 3 = 3 ∗ x ∗ 1 + ∗ x ∗ 2 + ∗ x ∗ 3 = 3 x1+x2+x3=3*x*1+*x*2+*x*3=3 x1+x2+x3=3x1+x2+x3=3
其次,我们需要确保选择的评分卡的得分都高于阈值 T T T
s 1 x 1 ≥ T , s 2 x 2 ≥ T , s 3 x 3 ≥ T ∗ s ∗ 1 ∗ x ∗ 1 ≥ ∗ T ∗ , ∗ s ∗ 2 ∗ x ∗ 2 ≥ ∗ T ∗ , ∗ s ∗ 3 ∗ x ∗ 3 ≥ ∗ T ∗ s1x1≥T,s2x2≥T,s3x3≥T*s*1*x*1≥*T*,*s*2*x*2≥*T*,*s*3*x*3≥*T* s1x1T,s2x2T,s3x3Ts1x1T,s2x2T,s3x3T

最后,我们需要确保变量 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3 都是二元变量:
x 12 = x 1 , x 22 = x 2 , x 32 = x 3 ∗ x ∗ 12 = ∗ x ∗ 1 , ∗ x ∗ 22 = ∗ x ∗ 2 , ∗ x ∗ 32 = ∗ x ∗ 3 x12=x1,x22=x2,x32=x3*x*12=*x*1,*x*22=*x*2,*x*32=*x*3 x12=x1,x22=x2,x32=x3x12=x1,x22=x2,x32=x3
将目标函数和约束条件转换为 QUBO 形式:
。。。。略,请下载完整文档

3 代码实现

data = readmatrix('附件1:data_100.csv');
rates = data(:,1:100);
loss_rates = data(:,101:200);R = rates .* loss_rates;Q = zeros(100,100);
for i = 1:100for j = i:100for k = 1:10for l = 1:10Q(i,j) = Q(i,j) + R(k,l)*rates(k,i)*rates(l,j);endendQ(j,i) = Q(i,j);end
endC1 = zeros(100,100);
for i = 1:100for j = 1:100for k = 1:10C1(i,j) = C1(i,j) + rates(k,i)*rates(k,j);endC1(i,j) = C1(i,j)*(sum(rates(:,i))-1)^2;end
endC2 = (sum(sum(rates))-1)^2;QUBO = Q - C1 - lambda*C2;
%qubo_solver 通常用于解决二次无约束二元优化问题(QUBO)或二次无约束整数规划问题(QUIP)
solution = qubo_solver(qubo_matrix, 'qbsolv', 'timeout', 30, 'num_reads', 100);。。。略,请下载完整代码

4 下载

查看知乎文章最底部的,或者私信我

zhuanlan.zhihu.com/p/621628668

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10244.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数学建模【三款超实用建模小软件!】

最近听到很多小伙伴的反馈,说学编程好麻烦,有没有一些简单的软件可以实现数学建模的相关模型,今天“科研交流”工作室为大家带来了几款实用的数学建模小软件,可以实现基础的评价、预测、网络分析等功能,在比赛时能缩短…

还在为数学建模的事发愁?带你一起来看看数模竞赛中必备的经典算法

前言 数学建模比赛是本科生和研究生阶段最重要的比赛之一,包括全国大学生数学建模竞赛(俗称“国赛”)和美国大学生数学建模竞赛(俗称“美赛”)。在这些比赛中取得好成绩,不仅有助于保研、有助于找工作&…

一份简短又全面的数学建模技能图谱:常用模型算法总结

声明一下:下述内容的多数链接出自一本教材: 司守奎《数学建模算法与应用》 第二版的PDF版本,改成转载需要给出原创链接;实属无意冒犯。 【pdf版教材链接-百度网盘: https://pan.baidu.com/s/1TEYSW5ZImQU4Sy7Om2rxgA …

美国大学生数学建模竞赛选题、经验以及准备材料

一、美赛题目选择: A连续 B离散 C数据见解 D运筹学/网络科学(优化/规划类) E环境科学(评价类) F政策 1.C数据见解,没有擅长统计数据处理的人在的话,可以考虑避开大数据量的题目&am…

2022mathorcup数学建模大数据竞赛选题建议及初步思路来啦!

大家好呀,mathorcup大数据赛今天下午六点开赛了,我先给大家带来一个初步的选题建议及思路哈,需要后续完整成品的可以直接点击本文章最下面的卡片哈。 OK废话不多说,本次mathorcup大数据赛时间跨度是很长的,一共一个月…

2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题二建模方案及代码实现详解

2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 建模方案及代码实现 更新进展 2022年12月21日 12:20 发布问题一、二思路及问题一的python代码实现 2022年12月22日 15:00 发布问题二python实现的代码 更新完毕 相关链接 &…

2023年MathorCup数学建模赛题浅析

MathorCup俗称妈杯,是除了美赛国赛外参赛人数首屈一指的比赛,而我们的妈杯今天也如期开赛。今年的妈杯难度,至少在我看来应该是2023年截至目前来讲最难的一场比赛。问题的设置、背景的选取等各个方面都吐露着我要难死你们的想法。难度是恒定的…

2021MathorCup高校数学建模挑战赛——大数据竞赛的一些想法总结

文章目录 1 前言2 数据预处理2.1 数据文件的分割2.2 数据文件的去重 3 问题一的求解3.1 数据提取3.2 去除数据异常值3.3 数据格式化3.4 数据集的插值3.5 ARIMA模型进行短期预测 4 问题二的求解4.1 人工神经网络(ANN)4.2 深度神经网络(DNN&…

2023MathorCup数学建模比赛的思路汇总帖

更新时间【4.13 19:45】ABCD均已更新,选题指导已更新,速看!后续会出各题详细思路及代码! 这里是小云的2023MathorCup数学建模比赛的思路汇总帖,比赛开始后将实时更新~ 竞赛共4道题目(A题、B题…

参加大学生数学建模大赛,Matlab和Python到底哪个更好?

前言 后台的小伙伴经常会问编程过程中,MATLAB和Python到底哪个更好?这个问题一直困惑很多同学,今天小编来给大家从实用型来综合分析一下: 首先从两者各自的应用做个对比。 一、python的优势 Python相对于Matlab最大的优势&…

chatgpt赋能python:Python和数学建模:如何参与数学建模比赛

Python和数学建模:如何参与数学建模比赛 介绍 数学建模比赛通常是学术界和工业界一起组织的比赛,旨在让学生掌握实际问题的建模方法以及如何处理数据、分析和解决实际问题。Python是一个流行的编程语言,广泛应用于数据科学和数学建模领域&a…

2023Mathorcup数学建模(妈妈杯)思路分析与选题建议

选题建议 建议根据自己的专业背景和兴趣,选择适合自己的题目进行作答。根据比赛规定的难度和开放度,我们推荐如下: A题 量子计算机在信用评分卡组合优化中的应用:建议统计学、数学等相关专业同学选择,难度较易&#x…

ChatGPT在Web3.0的应用:如何探索去中心化AI的新领域?

随着Web3.0技术的不断发展,去中心化应用已经成为了互联网领域的热点之一。作为人工智能领域的新星,ChatGPT的出现,进一步推动了去中心化应用的发展。在Web3.0应用中,ChatGPT可以被用于许多新领域,为用户提供更加智能、…

人类怎么管好以 ChatGPT 为代表的 AI ?

这个问题很有意思。 当前的 ChatGPT 模型并没有真正的意识,它只是根据训练数据和算法生成回答。在当前的技术水平下,人工智能不具备自我意识和自我决策的能力,也无法脱离其预先设定的目标进行行动。 然而,随着人工智能技术的发展…

解决局域网下安装python和pycharm的两个问题

第一个问题,无法启动此程序,因为计算机中丢失api-ms-win-core-path-11-1-0.dll,实际是因为win10和win7系统不兼容出现的问题。解决方式,把api-ms-win-core-path-l1-1-0.dll复制到一个文件夹中C:\Windows\System32。下载地址如下。…

腾讯首次投资大模型!Minimax被曝完成2.5亿美元新融资

衡宇 发自 凹非寺量子位 | 公众号 QbitAI 大模型正在垒起新的投资掘金热潮。 最新消息,大模型赛道创业公司MiniMax,又完成了新一轮2.5亿美元融资,整体估值超过12亿美元。 量子位进一步获悉,MiniMax这轮投资,还成功吸引…

答题老翻车,网友为360GPT起名“红孩儿”;暴雪曾要求网易支付5亿美元才能续约;暂停GPT-5研发呼吁引激战 | EA周报...

EA周报 2023年3月31日 每个星期1分钟,元宝带你喝一杯IT人的浓缩咖啡,了解天下事、掌握IT核心技术。 周报看点 1、曝暴雪CEO“狮子大开口”,曾要求网易支付 5 亿美元才能续约 2、暂停 GPT-5 研发呼吁引激战,吴恩达田渊栋反对千人联…

聚观早报|网易开放暴雪游戏退款申请通道;鱼跃医疗回应被罚270万

今日要闻:网易开放暴雪游戏退款申请通道;谷歌 ChatGPT 竞品搜索设计将迎来大改;“鱼跃医疗”回应被罚270万元;大众考虑在加拿大建设新的电池工厂;微软将把ChatGPT整合到必应搜索中 网易开放暴雪游戏退款申请通道 2 月…

字节辟谣 140 万美元年薪挖角 OpenAI 成员;网之易起诉暴雪欠款 3 亿;​确认侵权!三星被判赔 20 亿|极客头条...

「极客头条」—— 技术人员的新闻圈! CSDN 的读者朋友们早上好哇,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。 整理 | 梦依丹 出品 | CSDN(ID:CSDNnews) 一分钟速览新闻点&#…

网易称暴雪离婚不离身;苹果发布 M2 Pro 和 M2 Max 芯片;滴滴出行 App 已重新上架安卓应用商店 | 极客头条...

「极客头条」—— 技术人员的新闻圈! CSDN 的读者朋友们早上好哇,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。 整理 | 郑丽媛 出品 | CSDN(ID:CSDNnews) 一分钟速览新闻点&#…