计算机竞赛 图像检索算法

文章目录

  • 1 前言
  • 2 图像检索介绍
    • (1) 无监督图像检索
    • (2) 有监督图像检索
  • 3 图像检索步骤
  • 4 应用实例
  • 5 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

图像检索算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。
网络时代,随着各种社交网络的兴起,网络中图片,视频数据每天都以惊人的速度增长,逐渐形成强大的图像检索数据库。针对这些具有丰富信息的海量图片,如何有效地从巨大的图像数据库中检索出用户需要的图片,成为信息检索领域研究者感兴趣的一个研究方向。


2 图像检索介绍

给定一个包含特定实例(例如特定目标、场景、建筑等)的查询图像,图像检索旨在从数据库图像中找到包含相同实例的图像。但由于不同图像的拍摄视角、光照、或遮挡情况不同,如何设计出能应对这些类内差异的有效且高效的图像检索算法仍是一项研究难题。

在这里插入图片描述

图像检索的典型流程
首先,设法从图像中提取一个合适的图像的表示向量。其次,对这些表示向量用欧式距离或余弦距离进行最近邻搜索以找到相似的图像。最后,可以使用一些后处理技术对检索结果进行微调。可以看出,决定一个图像检索算法性能的关键在于提取的图像表示的好坏。

(1) 无监督图像检索

无监督图像检索旨在不借助其他监督信息,只利用ImageNet预训练模型作为固定的特征提取器来提取图像表示。

直觉思路
由于深度全连接特征提供了对图像内容高层级的描述,且是“天然”的向量形式,一个直觉的思路是直接提取深度全连接特征作为图像的表示向量。但是,由于全连接特征旨在进行图像分类,缺乏对图像细节的描述,该思路的检索准确率一般。

利用深度卷积特征 由于深度卷积特征具有更好的细节信息,并且可以处理任意大小的图像输入,目前的主流方法是提取深度卷积特征,并通过加权全局求和汇合(sum-
pooling)得到图像的表示向量。其中,权重体现了不同位置特征的重要性,可以有空间方向权重和通道方向权重两种形式。

CroW
深度卷积特征是一个分布式的表示。虽然一个神经元的响应值对判断对应区域是否包含目标用处不大,但如果多个神经元同时有很大的响应值,那么该区域很有可能包含该目标。因此,CroW把特征图沿通道方向相加,得到一张二维聚合图,并将其归一化并根号规范化的结果作为空间权重。CroW的通道权重根据特征图的稀疏性定义,其类似于自然语言处理中TF-
IDF特征中的IDF特征,用于提升不常出现但具有判别能力的特征。

Class weighted features
该方法试图结合网络的类别预测信息来使空间权重更具判别能力。具体来说,其利用CAM来获取预训练网络中对应各类别的最具代表性区域的语义信息,进而将归一化的CAM结果作为空间权重。

PWA
PWA发现,深度卷积特征的不同通道对应于目标不同部位的响应。因此,PWA选取一系列有判别能力的特征图,将其归一化之后的结果作为空间权重进行汇合,并将其结果级联起来作为最终图像表示。

在这里插入图片描述

(2) 有监督图像检索

在这里插入图片描述

有监督图像检索首先将ImageNet预训练模型在一个额外的训练数据集上进行微调,之后再从这个微调过的模型中提取图像表示。为了取得更好的效果,用于微调的训练数据集通常和要用于检索的数据集比较相似。此外,可以用候选区域网络提取图像中可能包含目标的前景区域。

孪生网络(siamese network)
和人脸识别的思路类似,使用二元或三元(+±)输入,训练模型使相似样本之间的距离尽可能小,而不相似样本之间的距离尽可能大。

3 图像检索步骤

图像检索技术主要包含几个步骤,分别为:

  • 输入图片

  • 特征提取

  • 度量学习

  • 重排序

  • 特征提取:即将图片数据进行降维,提取数据的判别性信息,一般将一张图片降维为一个向量;

  • 度量学习:一般利用度量函数,计算图片特征之间的距离,作为loss,训练特征提取网络,使得相似图片提取的特征相似,不同类的图片提取的特征差异性较大。

  • 重排序:利用数据间的流形关系,对度量结果进行重新排序,从而得到更好的检索结果。

在这里插入图片描述

4 应用实例

学长在这做了个图像检索器的demo,效果如下

工程代码:
在这里插入图片描述

关键代码:

# _*_ coding=utf-8 _*_from math import sqrtimport cv2import timeimport osimport numpy as npfrom scipy.stats.stats import  pearsonr#配置项文件import  pymysqlfrom config import *from mysql_config import *from utils import getColorVec, Bdistancedb = pymysql.connect(DB_addr, DB_user, DB_passwod, DB_name )def query(filename):if filename=="":fileToProcess=input("输入子文件夹中图片的文件名")else:fileToProcess=filename#fileToProcess="45.jpg"if(not os.path.exists(FOLDER+fileToProcess)):raise RuntimeError("文件不存在")start_time=time.time()img=cv2.imread(FOLDER+fileToProcess)colorVec1=getColorVec(img)#流式游标处理conn = pymysql.connect(host=DB_addr, user=DB_user, passwd=DB_passwod, db=DB_name, port=3306,charset='utf8', cursorclass = pymysql.cursors.SSCursor)leastNearRInFive=0Rlist=[]namelist=[]init_str="k"for one in range(0, MATCH_ITEM_NUM):Rlist.append(0)namelist.append(init_str)with conn.cursor() as cursor:cursor.execute("select name, featureValue from "+TABLE_NAME+" order by name")row=cursor.fetchone()count=1while row is not None:if row[0] == fileToProcess:row=cursor.fetchone()continuecolorVec2=row[1].split(',')colorVec2=list(map(eval, colorVec2))R2=pearsonr(colorVec1, colorVec2)rela=R2[0]#R2=Bdistance(colorVec1, colorVec2)#rela=R2#忽略正负性#if abs(rela)>abs(leastNearRInFive):#考虑正负if rela>leastNearRInFive:index=0for one in Rlist:if rela >one:Rlist.insert(index, rela)Rlist.pop(MATCH_ITEM_NUM)namelist.insert(index, row[0])namelist.pop(MATCH_ITEM_NUM)leastNearRInFive=Rlist[MATCH_ITEM_NUM-1]breakindex+=1count+=1row=cursor.fetchone()end_time=time.time()time_cost=end_time-start_timeprint("spend ", time_cost, ' s')for one in range(0, MATCH_ITEM_NUM):print(namelist[one]+"\t\t"+str(float(Rlist[one])))if __name__ == '__main__':#WriteDb()#exit()query("")

效果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/102977.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vcomp140.dll丢失的修复方法分享,电脑提示vcomp140.dll丢失修复方法

今天,我的电脑出现了一个奇怪的问题,打开某些程序时总是提示“找不到vcomp140.dll文件”。这个问题让我非常头疼,因为我无法正常使用电脑上的一些重要软件。为了解决这个问题,我在网上查找了很多资料,并尝试了多种方法…

pytorch里面的nn.AdaptiveAvgPool2d

今天遇到nn.AdaptiveAvgPool2d((None, 1)) AdaptiveAvgPool2d函数详细解释: 2D自适应平均池化(2D adaptive average pooling)是一种对输入信号进行二维平均池化的操作,输入信号由多个输入平面(input planes&#xff0…

wps设置其中几页为横版

问题:写文档的时候,有些表格列数太多,页面纵向显示内容不完整,可以给它改成横向显示。 将鼠标放在表格上一页的底部,点击‘插入-分页-下一页分节符’。 将鼠标放在表格页面的底部,点击‘插入-分页-下一页分…

Docker部署LNMP

Docker部署LNMP 一、安装docker1.安装docker2.镜像下载 二、部署MySQL1.获取镜像2.创建启动容器创建启动容器 huahua_mysql 三、部署PHP1.获取镜像2.创建容器3.查看信息 四、安装nginx1.获取镜像2.创建运行容器3.修改nginx配置文件 五、总结1. 安装Docker和Docker Compose&…

TypeScript入门指南

TypeScript学习总结内容目录: TypeScript概述 TypeScript特性。Javascript与TypeScript的区别 * TypeScript安装及其环境搭建TypeScript类型声明 * 单个类型声明,多个类型声明 * 任意类型声明 * 函数类型声明 * unknown类型…

(排序) 剑指 Offer 51. 数组中的逆序对 ——【Leetcode每日一题】

❓剑指 Offer 51. 数组中的逆序对 难度:困难 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。 示例 1: 输入: [7,5,6,4] 输出: 5 限制&#xff…

商城-学习整理-集群-K8S(二十三)

目录 一、k8s 集群部署1、k8s 快速入门1)、简介2)、架构1、整体主从方式2、Master 节点架构3、Node 节点架构 3)、概念4)、快速体验1、安装 minikube2、体验 nginx 部署升级 5)、流程叙述 2、k8s 集群安装1、kubeadm2、…

《多模态语料库 “书生·万卷” 1.0 详细解读 | 附下载地址》

国产大模型时代,高质量、开源、可信数据的重要性不言而喻,但它的稀缺性也是 AI 同行有目共睹的。为了改变这一现状,OpenDataLab 联合大模型语料数据联盟构建了“书生万卷”数据集,旨在为学术界及产业界提供更符合主流中文价值对齐…

【GeoDa实用技巧100例】022:geoda生成空间权重矩阵(邻接矩阵、距离矩阵)

geoda生成空间权重矩阵(邻接矩阵、距离矩阵),车式矩阵、后式矩阵、K邻接矩阵。 文章目录 一、概述二、“车式”邻接的gal文档生成三、“后式”邻接gal文档生成四、k最近邻居gat文档生成五、查看gal和gat文档一、概述 空间权重矩阵(或相应的表格形式)一般需要用计算机软件生…

住宅IP代理与数据中心IP代理的区别,最详解

跨境业务中常见到浏览器指纹防关联,但说到底,最重要的指纹是您的IP地址。在多个账号使用相同的IP地址简直触犯了大忌,这样做往往会导致账号惨遭暂停。 现在越来越多的跨境业务场景需要用到IP代理,那么我们常见的数据中心代理与住…

创造势能,把握节奏

善于打仗的人,创造高势能,行动节奏恰当 【安志强趣讲《孙子兵法》第18讲】 【原文】 激水之疾,至于漂石者,势也;鸷鸟之疾,至于毁折者,节也。 【注释】 激,阻截水流 节,时…

GPT4模型架构的泄漏与分析

迄今为止,GPT4 模型是突破性的模型,可以免费或通过其商业门户(供公开测试版使用)向公众提供。它为许多企业家激发了新的项目想法和用例,但对参数数量和模型的保密却扼杀了所有押注于第一个 1 万亿参数模型到 100 万亿参…

Crimson:高性能,高扩展的新一代 Ceph OSD

背景 随着物理硬件的不断发展,存储软件所使用的硬件的情况也一直在不断变化。 一方面,内存和 IO 技术一直在快速发展,硬件的性能在极速增加。在最初设计 Ceph 的时候,通常情况下,Ceph 都是被部署到机械硬盘上&#x…

言有三新书出版,《深度学习之图像识别(全彩版)》上市发行,配套超详细的原理讲解与丰富的实战案例!...

各位同学,今天有三来发布新书了,名为《深度学习之图像识别:核心算法与实战案例(全彩版)》,本次书籍为我写作并出版的第6本书籍。 前言 2019年5月份我写作了《深度学习之图像识别:核心技术与案例…

同态排序算法

参考文献: [Batcher68] Batcher K E. Sorting networks and their applications[C]//Proceedings of the April 30–May 2, 1968, spring joint computer conference. 1968: 307-314. [SV11] Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. IA…

西门子SCALANCE W744-1PRO 客户端配置

. 安装西门子无线搜索软件PST。 无线SCALANCE W788-1PRO参数设置。 打开PST软件:选择Settings->Network Adapter->2本地连接 输入该无线设置的IP地址,进入网络访问界面。输入密码:admin,点击Log on进入。 填写本无线的SSI…

Django会话技术

文章目录 Cookie实践运行结果 CSRF防止CSRF Session实践 Cookie 理论上,一个用户的所有请求燥作都应该属于同一个会话,而另一个用户的所有请求操作则应该属于另一个会话,二者不能混淆,而web应用程序是使用HTTP协议传输数据的。HTT…

go学习一之go的初体验

go语言学习笔记 一、golang初体验: 1.简单体验案例: package main{ //把这个test.go归属到main import "fmt" //引入一个包 func main(){//输出hellofmt.Println("hello world")} }2.从案例学到的知识点: (1) go文件的后缀是.…

Spring Cache的介绍以及怎么使用(redis)

Spring Cache 文章目录 Spring Cache1、Spring Cache介绍2、Spring Cache常用注解2.1、EnableCaching注解2.2、CachePut注解2.3、CacheEvict注解2.4、Cacheable注解 3、Spring Cache使用方式--redis 1、Spring Cache介绍 Spring Cache是一个框架,实现了基于注解的缓…

xcode15 change

jump to define 由原先的 control command left click 改为command left click