一文速学-让神经网络不再神秘,一天速学神经网络基础(一)


前言

思索了很久到底要不要出深度学习内容,毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新,很多坑都没有填满,而且现在深度学习的文章和学习课程都十分的多,我考虑了很久决定还是得出神经网络系列文章,不然如果以后数学建模竞赛或者是其他更优化模型如果用上了神经网络(比如利用LSTM进行时间序列模型预测),那么就更好向大家解释并且阐述原理了。但是深度学习的内容不是那么好掌握的,包含大量的数学理论知识以及大量的计算公式原理需要推理。且如果不进行实际操作很难够理解我们写的代码究极在神经网络计算框架中代表什么作用。不过我会尽可能将知识简化,转换为我们比较熟悉的内容,我将尽力让大家了解并熟悉神经网络框架,保证能够理解通畅以及推演顺利的条件之下,尽量不使用过多的数学公式和专业理论知识。以一篇文章快速了解并实现该算法,以效率最高的方式熟练这些知识。

现在很多竞赛虽然没有限定使用算法框架,但是更多获奖的队伍都使用到了深度学习算法,传统机器学习算法日渐式微。比如2022美国大学生数学建模C题,参数队伍使用到了深度学习网络的队伍,获奖比例都非常高,现在人工智能比赛和数据挖掘比赛都相继增多,对神经网络知识需求也日渐增多,因此十分有必要掌握各类神经网络算法。

博主专注建模四年,参与过大大小小数十来次数学建模,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。此专栏的目的就是为了让零基础快速使用各类数学模型、机器学习和深度学习以及代码,每一篇文章都包含实战项目以及可运行代码。博主紧跟各类数模比赛,每场数模竞赛博主都会将最新的思路和代码写进此专栏以及详细思路和完全代码。希望有需求的小伙伴不要错过笔者精心打造的专栏。


神经网络基础

神经网络的基础知识,我们能够掌握到以上8点基础知识,就算成功。 对于神经网络的理解,我们最好建立较为具体的思考内容而不是单单建立知识概念的抽象内容。当我们谈论神经网络时,其实可以把它想象成一种模仿人脑工作方式的计算方法。你可以把神经网络想象成一个由很多个小单元(神经元)组成的网络,就像大脑中的神经元一样。那么让我们回到上初中生物课的时候,先给大家放一张我们人类基础的神经大脑图片:

 

 不知道大家是否还有印象,再给大家放一张神经网络框架图片:

 

我们可以这样类比,和神经元传播类似:神经网络可以分为三层,分别是输入层,隐藏层以及输出层。每一层我们可以理解为就是大量的神经元组成的一个功能系统,也就是视为一个大号的神经元,释放的神经递质也就是我们当前层传递给下一层的数据参数,受体层则根据上一层给出的信号,去调整下一层该释放的神经信号。由此不断的一层一层传递数据,直到结束,也就是到输出层。

在神经网络中,最左边的一层称为输入层,如图,它有三个神经元。最右边的一层称为输出层,它包含两个输出神经元。如果一个层既不是输入层也不是输出层,那么我们就可以称其为隐藏层。不过隐藏层并不只限定有一层,比如下图:

 这个网络就有两层隐藏层。接下来我们再对单个神经元进行研究。

1.1神经元

 一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以用向其他多个神经元传递信息。轴突末梢与其他神经元的树突产生连接,从而传递信号。

在神经网络中,神经元模型是一个包含输入输出与计算功能的模型。输入可以类比为神经元的树突,输出可以类比为神经元的轴突,而计算则可以类比为细胞核。以下图为例:

 

 这就是一个典型的神经元模型,包含三个输入一个输出以及两个计算功能,连线称为“连接”,每一条连接线上都有一个“权重值”。权重的概念在我以往的机器学习算法都有很多次介绍这里便不开展,可以理解为线性回归中的a,b值。一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。

 现在了解到了基础的神经网络结构后不免产生疑问,神经层数是越多越好吗?神经网络设置的神经元个数是否会影响分类效果?

1.2神经网络性质

一般来说更多的神经元的神经网络可以表达更复杂的函数。然而这即是优势也是不足,也就是说我们可以通过神经网络工具建造大炮甚至是究极导弹,但是你却让我去打蚊子,也就是令我们算法工程师最头疼的过拟合问题。过拟合想必不过多描述,以一个实际案例大家基本都能了解:

 如上图所示,图中圆点代表数据集,颜色代表数据的类别。红色和绿色的圆点代表数据集的类别情况,红色和绿色的背景表示神经网络的分类情况。当网络隐藏层包含3个神经元时,模型并没有将绿色圆点和红色圆点都很好地区分开。

当我们将隐藏层的神经元个数调整为6的时候:

我们明显发现分类效果更好了,大部分数据都得到了比较好的分类。当将隐藏层的神经元个数再次扩充至20个时:

 这时候的分类效果达到了极致,可以说是99.9%了,大家肯定觉得这个模型简直完美,但是我要告诉大家的是这模型几乎不可能用,因为它过分了区分了红色和绿色,如果我新加入一些数据集落入红绿边缘的时候,几乎都有明确的关系,那么我们再次训练的时候便不能灵敏的根据新加入的数据集去调整区域了,而且实际上的数据集并不是明显可分的,更多的是模棱两可。因此更好的泛化能力才是我们追求的。

如果数据比较简单,我们可以使用结构较为简单的网络防止过拟合。为了防止过拟合,工程师研发出了很多方法,比如正则化,噪声处理等。本篇文章主要给大家先引入神经网络基本概念,下一篇将给大家具体详细阐述神经网络的关键计算函数-激活函数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/103384.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker: /lib64/libc.so.6: version `GLIBC_2.32‘ not found (required by docker)

Linux环境 Ubuntu 22.04 docker 最新版 jenkins docker 版本(以下版本都会报错 jenkins/jenkins:centos7 jenkins/jenkins:lts-centos7 jenkins/jenkins:ltsdocker-compose.yml配置 version: 3.6 services:gitlab:image: twang2218/gitlab-ce-zhrestart: alwayscontainer_nam…

港联证券|股票风险大吗?股票亏了怎么办?

在股市波动剧烈的时分,很多人会忧虑本身投资是否安全,是否能够获得理想的收益。那么股票危险大吗?股票亏了怎么办?我们准备了相关内容,以供参考。 股票危险大吗? 股票危险大不大并没有一个肯定的答案&…

微服务中间件--多级缓存

多级缓存 多级缓存a.JVM进程缓存1) Caffeine2) 案例 b.Lua语法1) 变量和循环2) 条件控制、函数 c.多级缓存1) 安装OpenResty2) 请求参数处理3) 查询Tomcat4) Redis缓存预热5) 查询Redis缓存6) Nginx本地缓存 d.缓存同步1) 数据同步策略2) 安装Canal2.a) 开启MySQL主从2.b) 安装…

前端vscode必备插件(强烈推荐)

目录 一、前言 二、工具推荐 1.《Chinese (Simplified) (简体中文) Language》 2.《ESLint》 3.《Git History》 4.vscode-icons 5.Path Intellisense 6.《Vetur》 7.《GitLens — Git supercharged》 8.《Image preview》 9.Debugger for Chrome 10.Prettier 11…

微服务中间件--Ribbon负载均衡

Ribbon负载均衡 a.Ribbon负载均衡原理b.Ribbon负载均衡策略 (IRule)c.Ribbon的饥饿加载 a.Ribbon负载均衡原理 1.发起请求http://userservice/user/1,Ribbon拦截该请求 2.Ribbon通过EurekaServer拉取userservice 3.EurekaServer返回服务列表给Ribbon做负载均衡 …

【云驻共创】华为云之手把手教你搭建IoT物联网应用充电桩实时监控大屏

文章目录 前言1.什么是充电桩2.什么是IOT3.什么是端、边、云、应用协同4.什么是Astro轻应用 一、玩转lOT动态实时大屏(线下实际操作)1.Astro轻应用说明1.1 场景说明1.2 资费说明1.3 整体流程 2.操作步骤2.1 开通设备接入服务2.2 创建产品2.3 注册设备2.4…

上海交大ACM班总教头团队重磅新作,带你动手学机器学习(文末赠书4本)

目录 0 写在前面1 什么是机器学习?2 ACM 班总教头:俞勇3 动手学习机器学习赠书活动 0 写在前面 机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器…

stm32之5.长按按键(使用时钟源)调整跑马灯速度

------------------------------ 源码 #include <stm32f4xx.h> #include "led.h" #include "delay.h" #include "my_str.h" #include "beep.h" #include "key.h" int main(void) { key_init(); Led_init();…

redis高级----------主从复制

redis的四种模式&#xff1a;单例模式&#xff1b;主从模式&#xff1b;哨兵模式&#xff0c;集群模式 一、主从模式 单例模式虽然操作简单&#xff0c;但是不具备高可用 缺点&#xff1a; 单点的宕机引来的服务的灾难、数据丢失单点服务器内存瓶颈&#xff0c;无法无限纵向扩…

7-42 整型关键字的散列映射

题目链接&#xff1a;这里 题目大意&#xff1a;就是写一个线性探测的散列 然鹅&#xff0c;我不会写(?)我一共错了两个地方 有冲突的情况下&#xff0c;就是线性探查然后往后找&#xff0c;但是我之前写的是t&#xff0c;应该是t (t1)%p;…在有重复关键字的时候&#xff0c…

运行flutter doctor命令窗口直接闪退

在cmd中输入flutter doctor后闪退了。 使用高速摄像机可以看到报错信息。 报错信息的意思是git的文件夹不能删掉&#xff0c;请保留flutter中git文件。

数据结构——栈和队列OJ题

栈和队列小提升&#xff01; 前言一、用队列实现栈队列接口实现&#xff08;1&#xff09;栈的接口定义&#xff08;2&#xff09;栈的初始化&#xff08;3&#xff09;入栈函数的定义&#xff08;4&#xff09;出栈函数的定义&#xff08;5&#xff09;查找栈顶元素&#xff0…

vue3 计算两个表单得到第三个表单数据

<el-formref"ruleFormRef"label-width"150px"label-suffix":":rules"rules":disabled"drawerProps.isView":model"drawerProps.rowData"><el-form-item label"云平台名称" prop"cloudId&…

硬件知识积累 LED的介绍与选型 (简单电路)

1. LED 的介绍 1.1 LED 是什么 LED :是一种能发光的半导体电子元件。发光二极管&#xff08;LED&#xff09;于20世纪60年代问世。在20世纪80年代之前&#xff0c;LED主要作为指示灯使用&#xff0c;从其光色来看&#xff0c;只有红光、橙光、黄光和绿光等几种。这一时期属于…

游乐场vr设备虚拟游乐园vr项目沉浸体验馆

在景区建设一个VR游乐场项目可以为游客提供一种新颖、刺激和沉浸式的游乐体验。提高游客的体验类型&#xff0c;以及景区的类目&#xff0c;从而可以吸引更多的人来体验。 1、市场调研&#xff1a;在决定建设VR游乐场项目之前&#xff0c;需要进行市场调研&#xff0c;了解当地…

基于Spark+django的国漫推荐系统--计算机毕业设计项目

近年来&#xff0c;随着互联网的蓬勃发展&#xff0c;企事业单位对信息的管理提出了更高的要求。以传统的管理方式已无法满足现代人们的需求。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#xff0c;随着各行业的不断发展&#xff0c;基…

【LUBAN】【功能验证】至简投屏功能之Android有线连接方式测试

1、概述 至简投屏功能之Android有线连接方式支持至简自带应用至加的投屏功能和谷歌官方的Android auto功能。 支持的功能范围列举如下&#xff1a; 1、屏幕投屏&#xff08;支持自动旋转屏&#xff09;2、音视频播放&#xff08;抖音、百度地图等&#xff09;3、车机反控手机…

里式替换原则(LSP)

目录 简介: 作用: 过程: 总结: 简介: 里式替换原则&#xff08;Liskov Substitution Principle&#xff0c;简称LSP&#xff09;的提出者是美国计算机科学家Barbara Liskov。Barbara Liskov是一位计算机科学家&#xff0c;麻省理工学院教授&#xff0c;也是美国第一个计算机…

港联证券|油价上涨对股票影响大吗?利好还是利空?

石油是现代国家国民经济的血脉&#xff0c;直接影响国民经济的发展。那么&#xff0c;油价上涨对股票影响大吗&#xff1f;利好仍是利空&#xff1f;为大家准备了相关内容&#xff0c;以供参阅。 香港港联证券有限公司&#xff08;百度一下港联证券&#xff09;成立于2021年1月…