【学习】ChatGPT对问答社区产生了哪些影响?

        引用 StackExchange 社区 CEO Prashanth Chandrasekar 的一篇博客标题 “Community is the future of AI”,引出本文的观点,即ChatGPT对问答社区产生了颠覆性影响,问答社区必须釜底抽薪、涅槃重生,但我们必须坚信“社区才是AI的未来”。

目录

一、影响

(一)新创建的问题数量在减少

1.结果数据

 2.折线图

3.对比

4.结论

(二)新答案

1.结果数据

 2.折线图

3.比较

4.结论

(三)新用户注册

 1.结果数据

2.折线图

3.对比

4.结论

二、思考


一、影响

        内容参考自 StackExchange 以下问题的答案(由用户 starball 回答):Did Stack Exchange's traffic go down since ChatGPT?icon-default.png?t=N658https://meta.stackexchange.com/questions/387278/did-stack-exchanges-traffic-go-down-since-chatgpt

        备注:结果来源于 Stack Exchange Data Explorer (SEDE) queries,统计数据从2018年开始,到当前博客写作日期的上个月(2023年6月),借用回答者的一句话:“2018 chosen somewhat arbitrarily - I just wanted some more context than looking at just 2022-2023”。

(一)新创建的问题数量在减少

        查询命令如下,与原始答案不同的是,这里添加了对统计结束时间的限制:

AND P.CreationDate < DATEFROMPARTS(2023, 7, 1) -- Limit to July 2023

/*-- INSTRUCTIONS:1)  Set the columns of #AllSiteResults to what you need in the final query.2)  Set the @seSiteQuery text (inside the WHILE loop) to the query that will run on each site to buildthe #AllSiteResults table.3)  Comment out the `WHERE       (dadn.dbName = 'StackExchange.Meta'...` line if site metas are desired.4)  Adjust the final query if post processing is desired (optional).
*/
DECLARE @seDbName       AS NVARCHAR (max)
DECLARE @seSiteURL      AS NVARCHAR (max)
DECLARE @sitePrettyName AS NVARCHAR (max)
DECLARE @seSiteQuery    AS NVARCHAR (max)CREATE TABLE #AllSiteResults (-- PUT THE COLUMNS YOU WILL USE, HERE-- vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv[Date] DATE,[NewQuestions] INT-- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
)DECLARE seSites_crsr CURSOR FOR
WITH dbsAndDomainNames AS (SELECT      dbL.dbName, STRING_AGG (dbL.domainPieces, '.')    AS siteDomainFROM (SELECT      TOP 50000   -- Never be that many sites and TOP is needed for order by, belowname        AS dbName, value     AS domainPieces, row_number ()  OVER (ORDER BY (SELECT 0)) AS [rowN]FROM        sys.databasesCROSS APPLY STRING_SPLIT (name, '.')WHERE       CASE    WHEN state_desc = 'ONLINE'THEN OBJECT_ID (QUOTENAME (name) + '.[dbo].[PostNotices]', 'U') -- Pick a table unique to SE dataENDIS NOT NULLORDER BY    dbName, [rowN] DESC) AS dbLGROUP BY    dbL.dbName
)
SELECT      REPLACE (REPLACE (dadn.dbName, 'StackExchange.', ''), '.', ' ' )  AS [Site Name], dadn.dbName, CASE  -- See https://meta.stackexchange.com/q/215071WHEN dadn.dbName = 'StackExchange.Mathoverflow.Meta'THEN 'https://meta.mathoverflow.net/'-- Some AVP/Audio/Video/Sound kerfuffle?WHEN dadn.dbName = 'StackExchange.Audio'THEN 'https://video.stackexchange.com/'-- DittoWHEN dadn.dbName = 'StackExchange.Audio.Meta'THEN 'https://video.meta.stackexchange.com/'-- Normal siteELSE 'https://' + LOWER (siteDomain) + '.com/'END AS siteURL
FROM        dbsAndDomainNames dadn
WHERE       (dadn.dbName = 'StackExchange.Meta'  OR  dadn.dbName NOT LIKE '%Meta%')-- Step through cursor
OPEN    seSites_crsr
FETCH   NEXT FROM seSites_crsr INTO @sitePrettyName, @seDbName, @seSiteURL
WHILE   @@FETCH_STATUS = 0
BEGIN-- QUERY THAT YOU WANT TO RUN ON EACH SITE, GOES HERE-- For example:-- vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvSET @seSiteQuery = 'USE [' + @seDbName + ']INSERT INTO #AllSiteResultsSELECTDATEFROMPARTS(YEAR(P.CreationDate), MONTH(P.CreationDate), 1) AS Date,COUNT(*) AS NewQuestionsFROM Posts PWHERE P.PostTypeId = 1 -- QuestionsAND YEAR(P.CreationDate) >= 2018AND P.CreationDate < DATEFROMPARTS(2023, 7, 1) -- Limit to July 2023GROUP BY DATEFROMPARTS(YEAR(P.CreationDate), MONTH(P.CreationDate), 1)'-- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^EXEC sp_executesql @seSiteQueryFETCH NEXT FROM seSites_crsr INTO @sitePrettyName, @seDbName, @seSiteURL
END
CLOSE       seSites_crsr
DEALLOCATE  seSites_crsr-- ADJUST THIS QUERY IF ANY POST PROCESSING IS DESIRED.
SELECT      MAX([Date]) AS Date, SUM([NewQuestions]) AS NewQuestions
FROM        #AllSiteResults
GROUP BY    [Date]
ORDER BY    [Date]

1.结果数据

        统计结果如下:

# 全网每月新问题数
Date	NewQuestions
2018/1/1 0:00	237404
2018/2/1 0:00	224143
2018/3/1 0:00	251429
2018/4/1 0:00	239636
2018/5/1 0:00	246762
2018/6/1 0:00	222615
2018/7/1 0:00	228026
2018/8/1 0:00	228371
2018/9/1 0:00	210906
2018/10/1 0:00	232536
2018/11/1 0:00	219300
2018/12/1 0:00	196715
2019/1/1 0:00	223493
2019/2/1 0:00	215514
2019/3/1 0:00	236543
2019/4/1 0:00	226815
2019/5/1 0:00	225382
2019/6/1 0:00	201296
2019/7/1 0:00	217943
2019/8/1 0:00	201189
2019/9/1 0:00	199442
2019/10/1 0:00	219626
2019/11/1 0:00	214303
2019/12/1 0:00	194623
2020/1/1 0:00	212131
2020/2/1 0:00	208687
2020/3/1 0:00	223977
2020/4/1 0:00	261901
2020/5/1 0:00	266095
2020/6/1 0:00	242444
2020/7/1 0:00	232102
2020/8/1 0:00	209958
2020/9/1 0:00	202312
2020/10/1 0:00	206767
2020/11/1 0:00	197732
2020/12/1 0:00	196899
2021/1/1 0:00	205239
2021/2/1 0:00	191901
2021/3/1 0:00	215623
2021/4/1 0:00	196910
2021/5/1 0:00	193489
2021/6/1 0:00	183171
2021/7/1 0:00	174020
2021/8/1 0:00	171779
2021/9/1 0:00	168816
2021/10/1 0:00	168644
2021/11/1 0:00	169028
2021/12/1 0:00	158997
2022/1/1 0:00	169548
2022/2/1 0:00	158851
2022/3/1 0:00	171107
2022/4/1 0:00	160153
2022/5/1 0:00	163367
2022/6/1 0:00	156387
2022/7/1 0:00	185296
2022/8/1 0:00	189989
2022/9/1 0:00	176730
2022/10/1 0:00	184835
2022/11/1 0:00	189896
2022/12/1 0:00	168000
2023/1/1 0:00	170610
2023/2/1 0:00	155088
2023/3/1 0:00	160060
2023/4/1 0:00	131668
2023/5/1 0:00	130464
2023/6/1 0:00	140041

2.折线图

        折线图如下:

3.对比

        StackOverflow 是 StackExchange 最大的网站,所以同时统计一下 StackOverflow 的情况做出对比。

        代码如下:

SELECTDATEFROMPARTS(YEAR(P.CreationDate), MONTH(P.CreationDate), 1) AS Date,COUNT(*) AS NewQuestions
FROM Posts P
WHERE P.PostTypeId = 1 -- QuestionsAND YEAR(P.CreationDate) >= 2018AND P.CreationDate < DATEFROMPARTS(2023, 7, 1)
GROUP BY DATEFROMPARTS(YEAR(P.CreationDate), MONTH(P.CreationDate), 1)
ORDER BY Date

         图如下:

        可以看到,StackOverflow 的趋势与 StackExchange 的整体趋势接近。

4.结论

        每年十二月份的活跃度通常会急剧下降。 2018年和2019年相当明显,但2020年和2021年就不那么明显了,2022年相当明显。所以很难说这到底是由于寒假导致的正常活动下降, 还是人们在 ChatGPT 而不是 Stack Exchange 上提问导致的。

        然而,近年来,1 月份的活动水平始终有所回升(2018-2022 年可观察到),但 2023 年 1 月则不然:新问题活动水平与 2022 年 12 月几乎持平,而且年后持续走低。

(二)新答案

         代码如下:

/*-- INSTRUCTIONS:1)  Set the columns of #AllSiteResults to what you need in the final query.2)  Set the @seSiteQuery text (inside the WHILE loop) to the query that will run on each site to buildthe #AllSiteResults table.3)  Comment out the `WHERE       (dadn.dbName = 'StackExchange.Meta'...` line if site metas are desired.4)  Adjust the final query if post processing is desired (optional).
*/
DECLARE @seDbName       AS NVARCHAR (max)
DECLARE @seSiteURL      AS NVARCHAR (max)
DECLARE @sitePrettyName AS NVARCHAR (max)
DECLARE @seSiteQuery    AS NVARCHAR (max)CREATE TABLE #AllSiteResults (-- PUT THE COLUMNS YOU WILL USE, HERE-- vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv[Date] DATE,[Type] NVARCHAR(max),[NewAnswers] REAL,[NewQuestions] REAL-- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
)DECLARE seSites_crsr CURSOR FOR
WITH dbsAndDomainNames AS (SELECT      dbL.dbName, STRING_AGG (dbL.domainPieces, '.')    AS siteDomainFROM (SELECT      TOP 50000   -- Never be that many sites and TOP is needed for order by, belowname        AS dbName, value     AS domainPieces, row_number ()  OVER (ORDER BY (SELECT 0)) AS [rowN]FROM        sys.databasesCROSS APPLY STRING_SPLIT (name, '.')WHERE       CASE    WHEN state_desc = 'ONLINE'THEN OBJECT_ID (QUOTENAME (name) + '.[dbo].[PostNotices]', 'U') -- Pick a table unique to SE dataENDIS NOT NULLORDER BY    dbName, [rowN] DESC) AS dbLGROUP BY    dbL.dbName
)
SELECT      REPLACE (REPLACE (dadn.dbName, 'StackExchange.', ''), '.', ' ' )  AS [Site Name], dadn.dbName, CASE  -- See https://meta.stackexchange.com/q/215071WHEN dadn.dbName = 'StackExchange.Mathoverflow.Meta'THEN 'https://meta.mathoverflow.net/'-- Some AVP/Audio/Video/Sound kerfuffle?WHEN dadn.dbName = 'StackExchange.Audio'THEN 'https://video.stackexchange.com/'-- DittoWHEN dadn.dbName = 'StackExchange.Audio.Meta'THEN 'https://video.meta.stackexchange.com/'-- Normal siteELSE 'https://' + LOWER (siteDomain) + '.com/'END AS siteURL
FROM        dbsAndDomainNames dadn
WHERE       (dadn.dbName = 'StackExchange.Meta'  OR  dadn.dbName NOT LIKE '%Meta%')-- Step through cursor
OPEN    seSites_crsr
FETCH   NEXT FROM seSites_crsr INTO @sitePrettyName, @seDbName, @seSiteURL
WHILE   @@FETCH_STATUS = 0
BEGIN-- QUERY THAT YOU WANT TO RUN ON EACH SITE, GOES HERE-- For example:-- vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvSET @seSiteQuery = 'USE [' + @seDbName + ']INSERT INTO #AllSiteResults-- Ignore the datapoints for the current month. That data is not yet complete. Ex. Things like roomba have "lag"SELECTDATEFROMPARTS(YEAR(P.CreationDate), MONTH(P.CreationDate), 1) AS Date,''average new non-deleted answers per new question'' AS Type,CAST(SUM(CASE WHEN P.PostTypeId = 2 THEN 1 ELSE 0 END) AS REAL) AS NewAnswerCount,CAST(SUM(CASE WHEN P.PostTypeId = 1 THEN 1 ELSE 0 END) AS REAL) AS NewQuestionCountFROM PostsWithDeleted PWHERE P.PostTypeId IN (1,2)AND DATEFROMPARTS(2017, 12, 1) < P.CreationDateAND P.CreationDate < DATEFROMPARTS(2023, 7, 1)AND (P.PostTypeId = 1 OR P.DeletionDate IS NULL)GROUP BY DATEFROMPARTS(YEAR(P.CreationDate), MONTH(P.CreationDate), 1)UNIONSELECTDATEFROMPARTS(YEAR(P.CreationDate), MONTH(P.CreationDate), 1) AS Date,''average new deleted answers per new question'' AS Type,CAST(SUM(CASE WHEN P.PostTypeId = 2 THEN 1 ELSE 0 END) AS REAL) AS NewAnswerCount,CAST(SUM(CASE WHEN P.PostTypeId = 1 THEN 1 ELSE 0 END) AS REAL) AS NewQuestionCountFROM PostsWithDeleted PWHERE P.PostTypeId IN (1,2)AND DATEFROMPARTS(2017, 12, 1) < P.CreationDateAND P.CreationDate < DATEFROMPARTS(2023, 7, 1)AND (P.PostTypeId = 1 OR P.DeletionDate IS NOT NULL)GROUP BY DATEFROMPARTS(YEAR(P.CreationDate), MONTH(P.CreationDate), 1)--ORDER BY Date'-- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^EXEC sp_executesql @seSiteQueryFETCH NEXT FROM seSites_crsr INTO @sitePrettyName, @seDbName, @seSiteURL
END
CLOSE       seSites_crsr
DEALLOCATE  seSites_crsr-- ADJUST THIS QUERY IF ANY POST PROCESSING IS DESIRED.
SELECT      MAX([Date]) AS [Date], MAX([Type]) AS [Type], SUM([NewAnswers]) / SUM([NewQuestions]) AS [AverageNewAnswersPerNewQuestion]
FROM        #AllSiteResults
GROUP BY    [Date], [Type]
ORDER BY    [Date]

1.结果数据

 

# 全网每个新问题的平均答案数
Date	Type	AverageNewAnswersPerNewQuestion
2017/12/1 0:00	average new deleted answers per new question	0.183502
2017/12/1 0:00	average new non-deleted answers per new question	0.89314
2018/1/1 0:00	average new non-deleted answers per new question	0.905366
2018/1/1 0:00	average new deleted answers per new question	0.183494
2018/2/1 0:00	average new deleted answers per new question	0.183517
2018/2/1 0:00	average new non-deleted answers per new question	0.89258
2018/3/1 0:00	average new deleted answers per new question	0.183375
2018/3/1 0:00	average new non-deleted answers per new question	0.884344
2018/4/1 0:00	average new non-deleted answers per new question	0.888751
2018/4/1 0:00	average new deleted answers per new question	0.179318
2018/5/1 0:00	average new non-deleted answers per new question	0.88925
2018/5/1 0:00	average new deleted answers per new question	0.175033
2018/6/1 0:00	average new deleted answers per new question	0.173389
2018/6/1 0:00	average new non-deleted answers per new question	0.8859
2018/7/1 0:00	average new deleted answers per new question	0.176872
2018/7/1 0:00	average new non-deleted answers per new question	0.906406
2018/8/1 0:00	average new non-deleted answers per new question	0.931269
2018/8/1 0:00	average new deleted answers per new question	0.180633
2018/9/1 0:00	average new deleted answers per new question	0.180515
2018/9/1 0:00	average new non-deleted answers per new question	0.919448
2018/10/1 0:00	average new non-deleted answers per new question	0.897453
2018/10/1 0:00	average new deleted answers per new question	0.176562
2018/11/1 0:00	average new deleted answers per new question	0.170907
2018/11/1 0:00	average new non-deleted answers per new question	0.869077
2018/12/1 0:00	average new deleted answers per new question	0.181469
2018/12/1 0:00	average new non-deleted answers per new question	0.89007
2019/1/1 0:00	average new non-deleted answers per new question	0.901642
2019/1/1 0:00	average new deleted answers per new question	0.180455
2019/2/1 0:00	average new deleted answers per new question	0.172495
2019/2/1 0:00	average new non-deleted answers per new question	0.901606
2019/3/1 0:00	average new non-deleted answers per new question	0.884096
2019/3/1 0:00	average new deleted answers per new question	0.169558
2019/4/1 0:00	average new deleted answers per new question	0.164192
2019/4/1 0:00	average new non-deleted answers per new question	0.862334
2019/5/1 0:00	average new deleted answers per new question	0.160113
2019/5/1 0:00	average new non-deleted answers per new question	0.860274
2019/6/1 0:00	average new non-deleted answers per new question	0.867573
2019/6/1 0:00	average new deleted answers per new question	0.16234
2019/7/1 0:00	average new deleted answers per new question	0.163545
2019/7/1 0:00	average new non-deleted answers per new question	0.875567
2019/8/1 0:00	average new non-deleted answers per new question	0.887144
2019/8/1 0:00	average new deleted answers per new question	0.170328
2019/9/1 0:00	average new deleted answers per new question	0.16466
2019/9/1 0:00	average new non-deleted answers per new question	0.882504
2019/10/1 0:00	average new deleted answers per new question	0.162603
2019/10/1 0:00	average new non-deleted answers per new question	0.872577
2019/11/1 0:00	average new non-deleted answers per new question	0.87025
2019/11/1 0:00	average new deleted answers per new question	0.158717
2019/12/1 0:00	average new deleted answers per new question	0.166101
2019/12/1 0:00	average new non-deleted answers per new question	0.870477
2020/1/1 0:00	average new non-deleted answers per new question	0.875078
2020/1/1 0:00	average new deleted answers per new question	0.160808
2020/2/1 0:00	average new deleted answers per new question	0.153799
2020/2/1 0:00	average new non-deleted answers per new question	0.849026
2020/3/1 0:00	average new non-deleted answers per new question	0.7816
2020/3/1 0:00	average new deleted answers per new question	0.146717
2020/4/1 0:00	average new deleted answers per new question	0.147589
2020/4/1 0:00	average new non-deleted answers per new question	0.779073
2020/5/1 0:00	average new non-deleted answers per new question	0.800361
2020/5/1 0:00	average new deleted answers per new question	0.151292
2020/6/1 0:00	average new deleted answers per new question	0.151263
2020/6/1 0:00	average new non-deleted answers per new question	0.806941
2020/7/1 0:00	average new deleted answers per new question	0.157548
2020/7/1 0:00	average new non-deleted answers per new question	0.825327
2020/8/1 0:00	average new deleted answers per new question	0.15776
2020/8/1 0:00	average new non-deleted answers per new question	0.824721
2020/9/1 0:00	average new non-deleted answers per new question	0.790762
2020/9/1 0:00	average new deleted answers per new question	0.154112
2020/10/1 0:00	average new non-deleted answers per new question	0.764484
2020/10/1 0:00	average new deleted answers per new question	0.157146
2020/11/1 0:00	average new deleted answers per new question	0.153182
2020/11/1 0:00	average new non-deleted answers per new question	0.750182
2020/12/1 0:00	average new deleted answers per new question	0.158255
2020/12/1 0:00	average new non-deleted answers per new question	0.794868
2021/1/1 0:00	average new non-deleted answers per new question	0.798135
2021/1/1 0:00	average new deleted answers per new question	0.157774
2021/2/1 0:00	average new deleted answers per new question	0.153559
2021/2/1 0:00	average new non-deleted answers per new question	0.779712
2021/3/1 0:00	average new non-deleted answers per new question	0.758168
2021/3/1 0:00	average new deleted answers per new question	0.143849
2021/4/1 0:00	average new deleted answers per new question	0.147879
2021/4/1 0:00	average new non-deleted answers per new question	0.754431
2021/5/1 0:00	average new deleted answers per new question	0.148288
2021/5/1 0:00	average new non-deleted answers per new question	0.755367
2021/6/1 0:00	average new non-deleted answers per new question	0.765796
2021/6/1 0:00	average new deleted answers per new question	0.146673
2021/7/1 0:00	average new non-deleted answers per new question	0.776896
2021/7/1 0:00	average new deleted answers per new question	0.146639
2021/8/1 0:00	average new non-deleted answers per new question	0.792048
2021/8/1 0:00	average new deleted answers per new question	0.15187
2021/9/1 0:00	average new deleted answers per new question	0.150652
2021/9/1 0:00	average new non-deleted answers per new question	0.785845
2021/10/1 0:00	average new deleted answers per new question	0.147064
2021/10/1 0:00	average new non-deleted answers per new question	0.755685
2021/11/1 0:00	average new non-deleted answers per new question	0.744011
2021/11/1 0:00	average new deleted answers per new question	0.141775
2021/12/1 0:00	average new non-deleted answers per new question	0.764816
2021/12/1 0:00	average new deleted answers per new question	0.148233
2022/1/1 0:00	average new deleted answers per new question	0.146973
2022/1/1 0:00	average new non-deleted answers per new question	0.780104
2022/2/1 0:00	average new deleted answers per new question	0.137886
2022/2/1 0:00	average new non-deleted answers per new question	0.753624
2022/3/1 0:00	average new deleted answers per new question	0.131572
2022/3/1 0:00	average new non-deleted answers per new question	0.729329
2022/4/1 0:00	average new non-deleted answers per new question	0.734639
2022/4/1 0:00	average new deleted answers per new question	0.13609
2022/5/1 0:00	average new non-deleted answers per new question	0.728135
2022/5/1 0:00	average new deleted answers per new question	0.131584
2022/6/1 0:00	average new deleted answers per new question	0.137936
2022/6/1 0:00	average new non-deleted answers per new question	0.743591
2022/7/1 0:00	average new deleted answers per new question	0.138265
2022/7/1 0:00	average new non-deleted answers per new question	0.764211
2022/8/1 0:00	average new deleted answers per new question	0.140399
2022/8/1 0:00	average new non-deleted answers per new question	0.766521
2022/9/1 0:00	average new non-deleted answers per new question	0.757918
2022/9/1 0:00	average new deleted answers per new question	0.134554
2022/10/1 0:00	average new non-deleted answers per new question	0.738382
2022/10/1 0:00	average new deleted answers per new question	0.13114
2022/11/1 0:00	average new non-deleted answers per new question	0.718665
2022/11/1 0:00	average new deleted answers per new question	0.130706
2022/12/1 0:00	average new non-deleted answers per new question	0.73153
2022/12/1 0:00	average new deleted answers per new question	0.182844
2023/1/1 0:00	average new deleted answers per new question	0.163113
2023/1/1 0:00	average new non-deleted answers per new question	0.755667
2023/2/1 0:00	average new non-deleted answers per new question	0.743234
2023/2/1 0:00	average new deleted answers per new question	0.157383
2023/3/1 0:00	average new deleted answers per new question	0.156859
2023/3/1 0:00	average new non-deleted answers per new question	0.741384
2023/4/1 0:00	average new non-deleted answers per new question	0.720417
2023/4/1 0:00	average new deleted answers per new question	0.151795
2023/5/1 0:00	average new non-deleted answers per new question	0.732252
2023/5/1 0:00	average new deleted answers per new question	0.143678
2023/6/1 0:00	average new deleted answers per new question	0.120529
2023/6/1 0:00	average new non-deleted answers per new question	0.759169

 2.折线图

         在 StackExchange 全网中,变化趋势几乎同步,反映出 ChatGPT 的出现对老用户(老用户倾向于在社区中贡献答案)的影响不大。这个结论参考自于一篇论文,好像是《Reading Answers on Stack Overflow: Not Enough!》(DOI:10.1109/tse.2019.2954319)。

        比较显著的是从 2022 年 11 月到 2022 年 12 月,删除的回复帖子数量出现了前所未有的增加。所以值得思考,是什么导致用户删除回复的帖子数量的?是平台对 ChatGPT 生成的答案的限制?有这种可能,需要后续验证。

3.对比

        与 StackOverflow 做对比,代码如下:

SELECTDATEFROMPARTS(YEAR(P.CreationDate), MONTH(P.CreationDate), 1) AS Date,CASE WHEN P.DeletionDate IS NULL THEN 'non-deleted' ELSE 'deleted' END AS Status,COUNT(*) AS NewAnswers
FROM PostsWithDeleted P
WHERE P.PostTypeId = 2 -- AnswersAND YEAR(P.CreationDate) >= 2018AND P.CreationDate < DATEFROMPARTS(2023, 7, 1)
GROUP BYDATEFROMPARTS(YEAR(P.CreationDate), MONTH(P.CreationDate), 1),CASE WHEN P.DeletionDate IS NULL THEN 'non-deleted' ELSE 'deleted' END
ORDER BY Date

        结果图如下:

         虽然近年来整体呈现下降趋势,但是,从2022年12月依赖,趋势变得更陡峭,占 StackExchange 大头的 StackOverflow 受 ChatGPT 的冲击是很大的。该图的趋势与新问题数量相似。

        对上面代码做如下修改:

FROM        dbsAndDomainNames dadn
-- WHERE       (dadn.dbName = 'StackExchange.Meta'  OR  dadn.dbName NOT LIKE '%Meta%')
WHERE       (dadn.dbName = 'StackOverflow') -- Only select Stack Overflow
-- Comment out the following line if site metas are desired
-- AND dadn.dbName NOT LIKE '%Meta%'
-- Step through cursor

         只获取 StackOverflow 的情况,图如下:

         可以看出,提出的问题被回答的情况明显的增加。

4.结论

        由于 StackOverflow 占大头,而这个论坛主要是面向技术人员的,由于 ChatGPT 的出现,很多问题不再需要在论坛中提问,所以导致 StackExchange 整体的活跃度下降。新答案数量也以同样的趋势在减少。但是所提问题的回答情况似乎没有受到影响,甚至在 StackOverflow 网站中,2023年以来,每个新的答案的平均回答率有上升趋势,答案的删除情况也明显的减少(这是进入后ChatGPT时代了吗?)原因还有待进一步考证。

(三)新用户注册

        代码如下:

SELECTDATEFROMPARTS(YEAR(U.CreationDate), MONTH(U.CreationDate), 1) AS Date,COUNT(*) AS NewUsers
FROM Users U
WHERE YEAR(U.CreationDate) >= 2018AND U.CreationDate < DATEFROMPARTS(2023, 7, 1)
GROUP BYDATEFROMPARTS(YEAR(U.CreationDate), MONTH(U.CreationDate), 1)
ORDER BY Date

 1.结果数据

# 每月新用户注册数
Date	NewUsers
2018/1/1 0:00	303064
2018/2/1 0:00	277977
2018/3/1 0:00	323594
2018/4/1 0:00	298977
2018/5/1 0:00	304450
2018/6/1 0:00	262515
2018/7/1 0:00	274961
2018/8/1 0:00	278287
2018/9/1 0:00	272128
2018/10/1 0:00	304007
2018/11/1 0:00	301353
2018/12/1 0:00	274968
2019/1/1 0:00	319298
2019/2/1 0:00	291886
2019/3/1 0:00	315879
2019/4/1 0:00	312456
2019/5/1 0:00	312536
2019/6/1 0:00	280361
2019/7/1 0:00	296166
2019/8/1 0:00	287561
2019/9/1 0:00	284323
2019/10/1 0:00	316200
2019/11/1 0:00	291018
2019/12/1 0:00	294891
2020/1/1 0:00	318868
2020/2/1 0:00	307204
2020/3/1 0:00	344408
2020/4/1 0:00	468303
2020/5/1 0:00	384514
2020/6/1 0:00	344951
2020/7/1 0:00	323656
2020/8/1 0:00	305353
2020/9/1 0:00	307687
2020/10/1 0:00	332683
2020/11/1 0:00	322922
2020/12/1 0:00	345420
2021/1/1 0:00	363082
2021/2/1 0:00	339855
2021/3/1 0:00	394545
2021/4/1 0:00	420813
2021/5/1 0:00	667550
2021/6/1 0:00	617327
2021/7/1 0:00	421782
2021/8/1 0:00	444984
2021/9/1 0:00	535107
2021/10/1 0:00	568112
2021/11/1 0:00	509507
2021/12/1 0:00	372878
2022/1/1 0:00	420221
2022/2/1 0:00	389280
2022/3/1 0:00	446719
2022/4/1 0:00	480977
2022/5/1 0:00	371546
2022/6/1 0:00	345780
2022/7/1 0:00	395201
2022/8/1 0:00	359470
2022/9/1 0:00	368080
2022/10/1 0:00	382385
2022/11/1 0:00	400144
2022/12/1 0:00	373079
2023/1/1 0:00	345450
2023/2/1 0:00	307249
2023/3/1 0:00	359899
2023/4/1 0:00	359313
2023/5/1 0:00	343078
2023/6/1 0:00	285215

 

2.折线图

        2018、2019年均在十二月有减少,但是在次年一月份就明显的回升。2020年没有这个规律,可能受疫情的影响很大,包括2021、2022年新用户明显的增加均可能受疫情的影响。2021年在12月减少,次年一月回暖,所以假设存在这样的规律。但是2022年12月下降之后,次年1月下降更多。

3.对比

        相比于全网,只关注于 StackOverflow 的话,2018 年 12 月新用户下降 13.1%,次年 1 月出现恢复。2019年11月至12月增长7.6%,次年1月进一步增长8.0%。2020 年,进入 12 月变化不大,次年 1 月增长 9.1%。2021年12月下降6.1%,次年1月恢复15.4%2022年,12月下降了5.8%,次年1月又下降了12.9%。

4.结论

        继 2022 年 12 月之后,2023 年 1 月新问题活动没有恢复,新用户注册量进一步下降,与往年趋势相比均呈下降趋势。但新问题的回答几乎没有受到影响。

        可能的影响因素:

        人们正在使用 ChatGPT 而不是 Stack Exchange。 这可能是一个重要的影响因素。

        在禁止使用 ChatGPT 的网站(例如 Stack Overflow)上写答案的人将被暂停,因此无法提出或回答问题。

        活动下降与 2023 年 1 月及随后几个月的重大科技裁员同时发生。 starball 认为不可能排除它是一个影响因素,尤其是 Stack Exchange 网络中大多数最大的站点都与技术相关。

二、思考

        这里引用 StackExchange 社区 CEO Prashanth Chandrasekar 博客 Community is the future of AIicon-default.png?t=N658https://stackoverflow.blog/2023/04/17/community-is-the-future-of-ai/中的一句话:

我一直在与不同经验水平的开发人员交谈,并且我一直听到新手程序员在人工智能的帮助下构建简单的网络应用程序的轶事。然而,这些故事中的大多数并不是以人工智能提示开始和结束的。相反,人工智能提供了一个起点和一些初始动力,而人类则进行额外的研究和学习来完成工作。人工智能可以调试一些错误,但会受到其他错误的阻碍。它可以建议良好的后端服务,但通常无法解决集成不同服务时出现的所有摩擦点。当然,当问题不是由机器指令而是人为错误造成时,最好的答案来自经历过相同问题的其他人。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10381.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

你想要的宏基因组-微生物组知识全在这(2023.5)

欢迎点击上方蓝色”宏基因组”关注我们&#xff01; 宏基因组/微生物组是当今世界科研最热门的研究领域之一&#xff0c;为加强宏基因组学技术和成果交流传播&#xff0c;推动全球华人微生物组领域发展&#xff0c;中科院青年科研人员创立“宏基因组”公众号&#xff0c;联合海…

2023年第二十届ChinaJoy新闻发布会 十大亮点解读

5月29日&#xff0c;2023年第二十届中国国际数码互动娱乐展览会&#xff08;ChinaJoy&#xff09;新闻发布会&#xff0c;在上海浦东嘉里大酒店召开&#xff0c;宣布本届ChinaJoy将于7月28日至7月31日&#xff0c;在上海新国际博览中心举办。 中国音像与数字出版协会第一副理事…

BFT 最前线 | 王小川:2033机器智慧将超人类;扎克伯格财富暴涨;哈工大:能跳跃的昆虫机器人;北京支持“1+4”机器人领域

原创 | 文 BFT机器人 名人动态 CELEBRITY NEWS 01 王小川&#xff1a;10年后机器智慧将超过人类 年底将推出对标GPT-3.5的模型 科技预言大师雷库兹韦尔说人工智能的奇点&#xff0c;机器智慧超过人类会发生在2045年&#xff0c;王小川的判断比这更激进&#xff0c;他认为这一…

开启单细胞及空间组学行业发展黄金时代!首届国际单细胞及空间组学大会在穗闭幕

2023年4月16日&#xff0c;首届TICSSO国际单细胞及空间组学大会圆满闭幕&#xff0c;本次大会吸引了2000余位来自产、学、研、资、医、政、媒等业界人士齐聚羊城&#xff0c;注册总人数5398人&#xff0c;网络播放总量达548245人次&#xff0c;网络观看覆盖美国、德国、日本、澳…

聚集十二罗汉,探索宇宙本质,马斯克神秘的xAI

作者 | 德新编辑 | 王博 马斯克组团入局通用人工智能。 7月12日&#xff0c;马斯克发推官宣成立新的公司xAI。据官网介绍&#xff0c;这是一家试图「探索理解宇宙本质」的公司。 新公司公布了12名首批成员&#xff0c;除了马斯克外&#xff0c;他们曾经在「AlphaStar、AlphaCod…

Transformer作者:指令型智能体的构建之法

来源 | The Robot Brains PodcastOneFlow编译翻译&#xff5c;徐佳渝、贾川、杨婷2017年&#xff0c;Google发布的《Attention Is All You Need》论文提出了Transformer架构&#xff0c;这成为过去十年神经网络领域最具影响力的技术创新之一&#xff0c;并被广泛应用于NLP、计算…

华为版AIGC或于7月7日发布;350名行业大佬警告AI可能给人类带来灭绝风险;钉钉斜杠“/” 面向企业用户定向邀测丨每日大事件...

‍ ‍数据智能产业创新服务媒体 ——聚焦数智 改变商业 企业动态 欧盟官员将于6月会见OpenAI CEO&#xff1a;讨论人工智能法规 5月30日&#xff0c;欧盟官员表示&#xff0c;欧盟产业主管埃里布雷顿将于下月在旧金山与美国人工智能研究公司OpenAI首席执行官山姆阿尔特曼会面&…

大湾区年度盛会上线!院士领衔,20+重磅嘉宾,相信边缘的力量!

边缘计算&#xff0c;作为一种革命性的计算范式&#xff0c;已经引起了全球各行各业的广泛关注。在云计算、大数据、人工智能等技术的驱动下&#xff0c;边缘计算能够将计算能力下沉到数据源头&#xff0c;实现更快的响应、更高的效率、更低的成本和更强的隐私保护。据市场研究…

ACL 2023|大模型时代,自然语言领域还有什么学术增长点?

省时查报告-专业、及时、全面的行研报告库 省时查方案-专业、及时、全面的营销策划方案库 【免费下载】2023年5月份全网热门报告合集 普通人如何利用ChatGPT变现赚钱&#xff1f; 无需翻墙&#xff0c;无需注册&#xff0c;ChatGPT4直接使用 ChatGPT提词手册&#xff0c;学完工…

为AIGC敲响警钟!千亿级赛道为何成了作恶温床?

‍数据智能产业创新服务媒体 ——聚焦数智 改变商业 随着人工智能通用大模型的问世&#xff0c;全球对AIGC技术的强大潜力有了更加深刻的认识。然而&#xff0c;这也引发了诸多关于AIGC技术可信度、隐私保护以及知识产权等问题的争议&#xff0c;引起了广泛关注。 5月9日&…

Milvus应用开发实战【语义搜索】

美国总统竞选活动即将到来。 现在是回顾拜登政府上任头两年的一些演讲的好时机。 搜索一些演讲记录以了解更多关于白宫迄今为止关于某些主题的信息不是很好吗&#xff1f; 假设我们要搜索演讲的内容。 我们该怎么做&#xff1f; 我们可以使用语义搜索。 语义搜索是目前人工智能…

YC最新投资值得细琢磨!亲测爽飞的ChatGPT联网工具;阿里云大模型开启邀测;SD绘画新手入门手册 | ShowMeAI日报

&#x1f440;日报&周刊合集 | &#x1f3a1;生产力工具与行业应用大全 | &#x1f9e1; 点赞关注评论拜托啦&#xff01; &#x1f916; 『ChatGPT 恢复 Plus 订阅服务』实测&#xff0c;昨天确实巨卡 实测发现&#xff0c;OpenAI ChatGPT 已经恢复了 Plus 订阅服务&…

chatgpt赋能Python-python_theano

简介 什么是Python? Python是一种高层次、动态、解释型编程语言。它是一个易于学习且功能强大的语言&#xff0c;拥有广泛的应用领域。Python是由Guido van Rossum于1989年发明和开发的。它的设计哲学强调代码的可读性和简洁性&#xff0c;在保持语言的清晰和简洁性时&#…

chatgpt赋能python:Python编程:如何赚取高薪?

Python编程&#xff1a;如何赚取高薪&#xff1f; Python语言是一门被广泛使用的编程语言&#xff0c;因其简单易学&#xff0c;而在软件开发、数据分析、机器学习及人工智能等领域中得到了广泛应用。随着这些领域的不断发展&#xff0c;对Python开发人才的需求也越来越高涨。…

谷歌推Bard百度推文心一言:挑战ChatGPT 竞争白热化

雷递网 雷建平 2月7日 在ChatGPT大获成功的推动下&#xff0c;百度宣布将推出类ChatGPT项目&#xff0c;该项目名字确定为文心一言&#xff0c;英文名ERNIE Bot&#xff0c;三月份完成内测&#xff0c;面向公众开放。 目前&#xff0c;文心一言在做上线前的冲刺。 2022年9月&am…

软件行业的最后十年【ChatGPT】

在这篇文章中&#xff0c;我将说明像 ChatGPT 这样的生成式人工智能 (GAI) 将如何在十年内取代软件工程师。 预测被离散化为 5 个阶段&#xff0c;总体轨迹趋向于完全接管。 但首先&#xff0c;一个简短的前言。 推荐&#xff1a;用 NSDT场景设计器 快速搭建3D场景。 1、关于AI…

2022年全球程序员薪资排行榜单来了!中国程序员薪酬排名......

上一篇&#xff1a;赞&#xff01;ChatGPT能接入微信了 身处互联网&#xff0c;或多或少都听说过&#xff0c;美国程序员的薪资非常高。 至于到底有多高&#xff1f;以前没多想&#xff0c;直到看到了2022年全球程序员薪资排行榜……我坐不住了。 而且在这份榜单中&#xff0c;…

Prompt Engineering | 对话聊天prompt

&#x1f604; 使用LLM来搭建一个定制的聊天机器人&#xff0c;只需要很少的工作量。 ⭐ 本文将讲解如何利用聊天格式与个性化或专门针对特兹那个任务或行为的聊天机器人进行多伦对话。 文章目录 1、提供对话的早期部分&#xff0c;引导模型继续聊天2、示例&#xff1a;构建一个…

建议收藏chatGPT说的Ubuntu常用命令合集

写在前面 这个是当下最流行最时髦的AI神器chatGPT和我一起合作写的一篇通用技术文章&#xff0c;请读者笑纳&#xff01; chatGPT说 咚咚咚&#xff0c;咚咚咚&#xff0c;嘿嘿&#xff1b;咚咚咚&#xff0c;咚咚咚&#xff0c;嘿嘿&#xff1b;AI等一会&#xff0c;我来发答案…

有点慌了!ChatGPT 可能影响 80% 工作岗位!

这是「进击的Coder」的第 818 篇技术分享 作者&#xff1a;机器之心编辑部 来源&#xff1a;机器之心报道 “ 阅读本文大概需要 9 分钟。 ” ChatGPT 的影响涵盖所有收入阶层&#xff0c;且高收入工作可能面临更大的风险。 ChatGPT 来了&#xff0c;失业还会远吗&#xff1f;前…