clickhouse-压测

一、数据集准备

数据集可以使用官网数据集,也可以用ssb-dbgen来准备

1.准备数据

这里最后生成表的数据行数为60亿行,数据量为300G左右

git clone https://github.com/vadimtk/ssb-dbgen.git
cd ssb-dbgen/
make

1.1 生成数据

# -s 指生成多少G的数据
$ ./dbgen -s 40 -T c
$ ./dbgen -s 40 -T l
$ ./dbgen -s 40 -T p
$ ./dbgen -s 40 -T s

1.2 创建表

CREATE TABLE customer
(C_CUSTKEY       UInt32,C_NAME          String,C_ADDRESS       String,C_CITY          LowCardinality(String),C_NATION        LowCardinality(String),C_REGION        LowCardinality(String),C_PHONE         String,C_MKTSEGMENT    LowCardinality(String)
)
ENGINE = MergeTree ORDER BY (C_CUSTKEY);CREATE TABLE lineorder
(LO_ORDERKEY             UInt32,LO_LINENUMBER           UInt8,LO_CUSTKEY              UInt32,LO_PARTKEY              UInt32,LO_SUPPKEY              UInt32,LO_ORDERDATE            Date,LO_ORDERPRIORITY        LowCardinality(String),LO_SHIPPRIORITY         UInt8,LO_QUANTITY             UInt8,LO_EXTENDEDPRICE        UInt32,LO_ORDTOTALPRICE        UInt32,LO_DISCOUNT             UInt8,LO_REVENUE              UInt32,LO_SUPPLYCOST           UInt32,LO_TAX                  UInt8,LO_COMMITDATE           Date,LO_SHIPMODE             LowCardinality(String)
)
ENGINE = MergeTree PARTITION BY toYear(LO_ORDERDATE) ORDER BY (LO_ORDERDATE, LO_ORDERKEY);CREATE TABLE part
(P_PARTKEY       UInt32,P_NAME          String,P_MFGR          LowCardinality(String),P_CATEGORY      LowCardinality(String),P_BRAND         LowCardinality(String),P_COLOR         LowCardinality(String),P_TYPE          LowCardinality(String),P_SIZE          UInt8,P_CONTAINER     LowCardinality(String)
)
ENGINE = MergeTree ORDER BY P_PARTKEY;CREATE TABLE supplier
(S_SUPPKEY       UInt32,S_NAME          String,S_ADDRESS       String,S_CITY          LowCardinality(String),S_NATION        LowCardinality(String),S_REGION        LowCardinality(String),S_PHONE         String
)
ENGINE = MergeTree ORDER BY S_SUPPKEY;

1.3 导入数据

$ clickhouse-client --query "INSERT INTO db_bench.customer FORMAT CSV" < customer.tbl
$ clickhouse-client --query "INSERT INTO db_bench.part FORMAT CSV" < part.tbl
$ clickhouse-client --query "INSERT INTO db_bench.supplier FORMAT CSV" < supplier.tbl
$ clickhouse-client --query "INSERT INTO db_bench.lineorder FORMAT CSV" < lineorder.tbl

1.4 join表

这个操作耗时两个小时,占用内存为29G

# 因为这个操作比较耗费内存,所以要事先设置好内存限制
SET max_memory_usage = 30000000000;CREATE TABLE lineorder_flat
ENGINE = MergeTree ORDER BY (LO_ORDERDATE, LO_ORDERKEY)
AS SELECTl.LO_ORDERKEY AS LO_ORDERKEY,l.LO_LINENUMBER AS LO_LINENUMBER,l.LO_CUSTKEY AS LO_CUSTKEY,l.LO_PARTKEY AS LO_PARTKEY,l.LO_SUPPKEY AS LO_SUPPKEY,l.LO_ORDERDATE AS LO_ORDERDATE,l.LO_ORDERPRIORITY AS LO_ORDERPRIORITY,l.LO_SHIPPRIORITY AS LO_SHIPPRIORITY,l.LO_QUANTITY AS LO_QUANTITY,l.LO_EXTENDEDPRICE AS LO_EXTENDEDPRICE,l.LO_ORDTOTALPRICE AS LO_ORDTOTALPRICE,l.LO_DISCOUNT AS LO_DISCOUNT,l.LO_REVENUE AS LO_REVENUE,l.LO_SUPPLYCOST AS LO_SUPPLYCOST,l.LO_TAX AS LO_TAX,l.LO_COMMITDATE AS LO_COMMITDATE,l.LO_SHIPMODE AS LO_SHIPMODE,c.C_NAME AS C_NAME,c.C_ADDRESS AS C_ADDRESS,c.C_CITY AS C_CITY,c.C_NATION AS C_NATION,c.C_REGION AS C_REGION,c.C_PHONE AS C_PHONE,c.C_MKTSEGMENT AS C_MKTSEGMENT,s.S_NAME AS S_NAME,s.S_ADDRESS AS S_ADDRESS,s.S_CITY AS S_CITY,s.S_NATION AS S_NATION,s.S_REGION AS S_REGION,s.S_PHONE AS S_PHONE,p.P_NAME AS P_NAME,p.P_MFGR AS P_MFGR,p.P_CATEGORY AS P_CATEGORY,p.P_BRAND AS P_BRAND,p.P_COLOR AS P_COLOR,p.P_TYPE AS P_TYPE,p.P_SIZE AS P_SIZE,p.P_CONTAINER AS P_CONTAINER
FROM lineorder AS l
INNER JOIN customer AS c ON c.C_CUSTKEY = l.LO_CUSTKEY
INNER JOIN supplier AS s ON s.S_SUPPKEY = l.LO_SUPPKEY
INNER JOIN part AS p ON p.P_PARTKEY = l.LO_PARTKEY;

二、基准测试

1.benchmark的使用

1.1 基本用法

# 以下几种写法都可以
$ clickhouse-benchmark --query ["single query"] [keys]
$ echo "single query" | clickhouse-benchmark [keys]
$ clickhouse-benchmark [keys] <<< "single query"
clickhouse-benchmark [keys] < queries_file;
# 比较两个clickhouse性能
$ echo "SELECT * FROM system.numbers LIMIT 10000000 OFFSET 10000000" | clickhouse-benchmark --host=localhost --port=9001 --host=localhost --port=9000 -i 10

1.2 参数详解

--query=QUERY — 要执行的查询。 如果未传递此参数,clickhouse-benchmark 将从标准输入读取查询。
-c N, --concurrency=N — clickhouse-benchmark 同时发送的查询数。 默认值:1。
-d N, --delay=N — 中间报告之间的间隔(以秒为单位)(以禁用报告集 0)。 默认值:1。
-h HOST, --host=HOST — 服务器主机。 默认值:本地主机。 对于比较模式,您可以使用多个 -h 键。
-p N, --port=N — 服务器端口。 默认值:9000。对于比较模式,您可以使用多个 -p 键。
-i N, --iterations=N — 查询总数。 默认值:0(永远重复)。
-r, --randomize — 如果有多个输入查询,则查询执行的随机顺序。
-s, --secure — 使用 TLS 连接。
-t N, --timelimit=N — 时间限制(以秒为单位)。 当达到指定的时间限制时,clickhouse-benchmark 将停止发送查询。 默认值:0(时间限制禁用)。
--confidence=N — T 检验的置信度。 可能的值:0 (80%)、1 (90%)、2 (95%)、3 (98%)、4 (99%)、5 (99.5%)。 默认值:5。在比较模式下,clickhouse-benchmark 执行独立双样本学生 t 检验,以确定两个分布在所选置信水平下是否没有差异。
--cumulative — 打印累积数据而不是每个间隔的数据。
--database=DATABASE_NAME — ClickHouse 数据库名称。 默认值:默认。
--json=FILEPATH — JSON 输出。 设置密钥后,clickhouse-benchmark 会将报告输出到指定的 JSON 文件。
--user=USERNAME — ClickHouse 用户名。 默认值:默认。
--password=PSWD — ClickHouse 用户密码。 默认值:空字符串。
--stacktrace — 堆栈跟踪输出。 设置密钥后,clickhouse-bencmark 会输出异常的堆栈跟踪。
--stage=WORD — 服务器上的查询处理阶段。 ClickHouse 在指定阶段停止查询处理并向 clickhouse-benchmark 返回答案。 可能的值:complete、fetch_columns、with_mergeable_state。 默认值:完整。
--help — 显示帮助消息。
如果要对查询应用某些设置,请将它们作为键传递 --<session setting name>= SETTING_VALUE。 例如,--max_memory_usage=1048576

1.3 结果分析

# 执行的查询数:字段中的查询数。
Queries executed: 72 (1800.000%).
# ClickHouse 服务器的端点。
# queries:已处理查询的数量。
# QPS:在 --delay 参数指定的时间段内服务器每秒执行的查询数量。
# RPS:在 --delay 参数指定的时间段内服务器每秒读取的行数。
# MiB/s:在 --delay 参数中指定的时间段内,服务器每秒读取多少兆字节。
# result RPS:在 --delay 参数中指定的时间段内,服务器每秒将多少行放入查询结果中。
# result MiB/s。 在 --delay 参数指定的时间段内,服务器每秒向查询结果放置多少兆字节。localhost:9000, queries 2, QPS: 0.156, RPS: 432704682.870, MiB/s: 1370.478, result RPS: 2.185, result MiB/s: 0.000.
# 查询执行时间的百分位数。
0.000%		0.217 sec.
10.000%		0.217 sec.
20.000%		0.217 sec.
30.000%		0.217 sec.
40.000%		0.217 sec.
50.000%		12.594 sec.
60.000%		12.594 sec.
70.000%		12.594 sec.
80.000%		12.594 sec.
90.000%		12.594 sec.
95.000%		12.594 sec.
99.000%		12.594 sec.
99.900%		12.594 sec.
99.990%		12.594 sec.状态字符串包含(按顺序):ClickHouse 服务器的端点。
已处理查询的数量。
QPS:在 --delay 参数指定的时间段内服务器每秒执行的查询数量。
RPS:在 --delay 参数指定的时间段内服务器每秒读取的行数。
MiB/s:在 --delay 参数中指定的时间段内,服务器每秒读取多少兆字节。
结果 RPS:在 --delay 参数中指定的时间段内,服务器每秒将多少行放入查询结果中。
结果 MiB/s。 在 --delay 参数指定的时间段内,服务器每秒向查询结果放置多少兆字节。
查询执行时间的百分位数。

2.基本测试

基准测试的内容可以看官网,具体的sql在这里查看。我是共写了4个sql文件,内容如下

# test1.sql
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM db_bench.lineorder_flat WHERE toYear(LO_ORDERDATE) = 1993 AND LO_DISCOUNT BETWEEN 1 AND 3 AND LO_QUANTITY < 25;
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM db_bench.lineorder_flat WHERE toYYYYMM(LO_ORDERDATE) = 199401 AND LO_DISCOUNT BETWEEN 4 AND 6 AND LO_QUANTITY BETWEEN 26 AND 35;
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM db_bench.lineorder_flat WHERE toISOWeek(LO_ORDERDATE) = 6 AND toYear(LO_ORDERDATE) = 1994 AND LO_DISCOUNT BETWEEN 5 AND 7 AND LO_QUANTITY BETWEEN 26 AND 35;# test2.sql
SELECT sum(LO_REVENUE),toYear(LO_ORDERDATE) AS year,P_BRAND FROM db_bench.lineorder_flat WHERE P_CATEGORY = 'MFGR#12' AND S_REGION = 'AMERICA' GROUP BY year,P_BRAND ORDER BY year,P_BRAND;
SELECT sum(LO_REVENUE),toYear(LO_ORDERDATE) AS year,P_BRAND FROM db_bench.lineorder_flat WHERE P_BRAND >= 'MFGR#2221' AND P_BRAND <= 'MFGR#2228' AND S_REGION = 'ASIA' GROUP BY year,P_BRAND ORDER BY year,P_BRAND;
SELECT sum(LO_REVENUE), toYear(LO_ORDERDATE) AS year, P_BRAND FROM db_bench.lineorder_flat WHERE P_BRAND = 'MFGR#2239' AND S_REGION = 'EUROPE' GROUP BY year, P_BRAND ORDER BY year, P_BRAND;# test3.sql
SELECT C_NATION, S_NATION, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM db_bench.lineorder_flat WHERE C_REGION = 'ASIA' AND S_REGION = 'ASIA' AND year >= 1992 AND year <= 1997 GROUP BY C_NATION, S_NATION, year ORDER BY year ASC, revenue DESC;
SELECT C_CITY, S_CITY, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM db_bench.lineorder_flat WHERE C_NATION = 'UNITED STATES' AND S_NATION = 'UNITED STATES' AND year >= 1992 AND year <= 1997 GROUP BY C_CITY, S_CITY, year ORDER BY year ASC, revenue DESC;
SELECT C_CITY, S_CITY, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM db_bench.lineorder_flat WHERE (C_CITY = 'UNITED KI1' OR C_CITY = 'UNITED KI5') AND (S_CITY = 'UNITED KI1' OR S_CITY = 'UNITED KI5') AND year >= 1992 AND year <= 1997 GROUP BY C_CITY, S_CITY, year ORDER BY year ASC, revenue DESC;
SELECT C_CITY, S_CITY, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM db_bench.lineorder_flat WHERE (C_CITY = 'UNITED KI1' OR C_CITY = 'UNITED KI5') AND (S_CITY = 'UNITED KI1' OR S_CITY = 'UNITED KI5') AND toYYYYMM(LO_ORDERDATE) = 199712 GROUP BY C_CITY, S_CITY, year ORDER BY year ASC, revenue DESC;# test4.sql
SELECT toYear(LO_ORDERDATE) AS year, C_NATION, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM db_bench.lineorder_flat WHERE C_REGION = 'AMERICA' AND S_REGION = 'AMERICA' AND (P_MFGR = 'MFGR#1' OR P_MFGR = 'MFGR#2') GROUP BY year, C_NATION ORDER BY year ASC, C_NATION ASC;
SELECT toYear(LO_ORDERDATE) AS year, S_NATION, P_CATEGORY, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM db_bench.lineorder_flat WHERE C_REGION = 'AMERICA' AND S_REGION = 'AMERICA' AND (year = 1997 OR year = 1998) AND (P_MFGR = 'MFGR#1' OR P_MFGR = 'MFGR#2') GROUP BY year, S_NATION, P_CATEGORY ORDER BY year ASC, S_NATION ASC, P_CATEGORY ASC;
SELECT toYear(LO_ORDERDATE) AS year, S_CITY, P_BRAND, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM db_bench.lineorder_flat WHERE S_NATION = 'UNITED STATES' AND (year = 1997 OR year = 1998) AND P_CATEGORY = 'MFGR#14' GROUP BY year, S_CITY, P_BRAND ORDER BY year ASC, S_CITY ASC, P_BRAND ASC;

2.1 测试方法

clickhouse-benchmark < test1.sql
clickhouse-benchmark < test2.sql
clickhouse-benchmark < test3.sql
clickhouse-benchmark < test4.sql

2.2 测试结果

# test1
Queries executed: 921 (30700.000%).localhost:9000, queries 2, QPS: 5.558, RPS: 263878534.377, MiB/s: 2012.050, result RPS: 5.558, result MiB/s: 0.000.0.000%		0.091 sec.
10.000%		0.091 sec.
20.000%		0.091 sec.
30.000%		0.091 sec.
40.000%		0.091 sec.
50.000%		0.268 sec.
60.000%		0.268 sec.
70.000%		0.268 sec.
80.000%		0.268 sec.
90.000%		0.268 sec.
95.000%		0.268 sec.
99.000%		0.268 sec.
99.900%		0.268 sec.# test2
Queries executed: 32 (1066.667%).localhost:9000, queries 1, QPS: 0.054, RPS: 326066467.053, MiB/s: 2797.293, result RPS: 3.043, result MiB/s: 0.000.0.000%		18.401 sec.
10.000%		18.401 sec.
20.000%		18.401 sec.
30.000%		18.401 sec.
40.000%		18.401 sec.
50.000%		18.401 sec.
60.000%		18.401 sec.
70.000%		18.401 sec.
80.000%		18.401 sec.
90.000%		18.401 sec.
95.000%		18.401 sec.
99.000%		18.401 sec.
99.900%		18.401 sec.
99.990%		18.401 sec.# test3
localhost:9000, queries 73, QPS: 0.082, RPS: 340111314.396, MiB/s: 2527.187, result RPS: 15.938, result MiB/s: 0.000.0.000%		0.182 sec.
10.000%		0.217 sec.
20.000%		0.230 sec.
30.000%		10.547 sec.
40.000%		12.614 sec.
50.000%		14.860 sec.
60.000%		16.560 sec.
70.000%		18.072 sec.
80.000%		18.285 sec.
90.000%		19.915 sec.
95.000%		19.962 sec.
99.000%		20.011 sec.
99.900%		20.059 sec.
99.990%		20.059 sec.# test4
Queries executed: 3 (100.000%).localhost:9000, queries 1, QPS: 0.474, RPS: 683988835.693, MiB/s: 9777.042, result RPS: 378.949, result MiB/s: 0.004.0.000%		2.111 sec.
10.000%		2.111 sec.
20.000%		2.111 sec.
30.000%		2.111 sec.
40.000%		2.111 sec.
50.000%		2.111 sec.
60.000%		2.111 sec.
70.000%		2.111 sec.
80.000%		2.111 sec.
90.000%		2.111 sec.
95.000%		2.111 sec.
99.000%		2.111 sec.
99.900%		2.111 sec.
99.990%		2.111 sec.

2.3 cpu情况

 PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND7031 999       20   0  0.257t 1.470g  99080 S  4656  0.8   3643:13 clickhouse-serv

2.4 读取数据情况

在这里插入图片描述

结论: 可以看到读取数据的速度还是非常快的,每秒读取的行数和数据量都很大,读取时非常耗cpu资源,但内存占用缺极少

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/103840.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在线转换器有哪些优势?在线Word转PDF操作分享

我们如果想要将两者不同格式文件进行格式转换&#xff0c;就需要下载安装转换器。如果出门带的设备没有安装转换软件客户端&#xff0c;就无法使用&#xff0c;会比较麻烦。现在有了在线转换工具&#xff0c;只需要打开相应的网页就可使用&#xff0c;那么在线Word转PDF的操作是…

matlab 点云精配准(1)——point to point ICP(点到点的ICP)

目录 一、算法原理参考文献二、代码实现三、结果展示四、参考链接本文由CSDN点云侠原创,爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、算法原理 参考文献 [1] BESL P J,MCKAY N D.A method for registration of 3-Dshapes[J].IEEE Tran…

vue3——递归组件的使用

该文章是在学习 小满vue3 课程的随堂记录示例均采用 <script setup>&#xff0c;且包含 typescript 的基础用法 一、使用场景 递归组件 的使用场景&#xff0c;如 无限级的菜单 &#xff0c;接下来就用菜单的例子来学习 二、具体使用 先把菜单的基础内容写出来再说 父…

interview1-DB篇

需要项目经验可自行上Gitee寻找项目资源 一、Redis篇 1、缓存 缓存的要点可分为穿透、击穿、雪崩&#xff0c;双写一致、持久化&#xff0c;数据过期、淘汰策略。 &#xff08;1&#xff09;穿透、击穿、雪崩 1.缓存穿透 查询一个不存在的数据&#xff0c;mysql查询不到数据…

网络面试题(172.22.141.231/26,该IP位于哪个网段? 该网段拥有多少可用IP地址?广播地址是多少?)

此题面试中常被问到&#xff0c;一定要会172.22.141.231/26&#xff0c;该IP位于哪个网段&#xff1f; 该网段拥有多少可用IP地址&#xff1f;广播地址是多少&#xff1f; 解题思路&#xff1a; 网络地址&#xff1a;172.22.141.192 10101100.00010110.10001101.11000000 广播…

javascript常用的东西

JavaScript 是一门强大的编程语言&#xff0c;用于为网页添加交互性和动态性。也可以锻炼人们的逻辑思维&#xff0c;是一个非常好的东西。 一、变量和数据类型&#xff1a; 变量&#xff1a; 变量是用于存储数据值的容器。在 JavaScript 中&#xff0c;你可以使用 var、let…

git分支

一、引言 分支的命名规范以及管理方式对项目的版本发布至关重要&#xff0c;为了解决实际开发过程中版本发布时代码管理混乱、冲突等比较头疼的问题&#xff0c;我们将在文中阐述如何更好的管理代码分支。 二、总览&#xfeff; 从上图可以看到主要包含下面几个分支&#xff…

真伪定时器

首先观察一下下面两组代码区别在哪里&#xff1f; 第一组代码 setInterval(() > {// 1.5s 的同步逻辑 }, 1000);第二组代码 function fn() {setTimeout(() > {// 1.5s 的同步逻辑fn();}, 1000); }fn();两组代码都有定时功能&#xff0c;看起来也都是每隔1s执行一次任务…

ubuntu20搭建环境使用的一下指令

1.更新源 sudo vim etc/apt/sources.listdeb http://mirrors.aliyun.com/ubuntu/ xenial main deb-src http://mirrors.aliyun.com/ubuntu/ xenial maindeb http://mirrors.aliyun.com/ubuntu/ xenial-updates main deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates…

RabbitMQ特性介绍和使用案例

❤ 作者主页&#xff1a;李奕赫揍小邰的博客 ❀ 个人介绍&#xff1a;大家好&#xff0c;我是李奕赫&#xff01;(&#xffe3;▽&#xffe3;)~* &#x1f34a; 记得点赞、收藏、评论⭐️⭐️⭐️ &#x1f4e3; 认真学习!!!&#x1f389;&#x1f389; 文章目录 RabbitMQ特性…

Android学习之路(8) Activity

本节引言&#xff1a; 本节开始讲解Android的四大组件之一的Activity(活动)&#xff0c;先来看下官方对于Activity的介绍&#xff1a; 移动应用体验与桌面体验的不同之处在于&#xff0c;用户与应用的互动并不总是在同一位置开始&#xff0c;而是经常以不确定的方式开始。例如&…

「UG/NX」Block UI 指定点SpecifyPoint

✨博客主页何曾参静谧的博客📌文章专栏「UG/NX」BlockUI集合📚全部专栏「UG/NX」NX二次开发「UG/NX」BlockUI集合「VS」Visual Studio「QT」QT5程序设计「C/C+&#

【使用perf和火焰图分析PostgreSQL数据库的性能瓶颈】

Perf工具可用来对软件进行优化&#xff0c;包括算法优化&#xff08;空间复杂度、时间复杂度&#xff09;和代码优化&#xff08;提高执行速度、减少内存占用&#xff09;等等&#xff0c;perf 最常用的参数有top、stat、record&#xff0c;另外还有list和report等。 本文主要使…

设计模式-工厂设计模式

核心思想 在简单工厂模式的基础上进一步的抽象化具备更多的可扩展和复用性&#xff0c;增强代码的可读性使添加产品不需要修改原来的代码&#xff0c;满足开闭原则 优缺点 优点 符合单一职责&#xff0c;每个工厂只负责生产对应的产品符合开闭原则&#xff0c;添加产品只需添…

【私有GPT】CHATGLM-6B部署教程

【私有GPT】CHATGLM-6B部署教程 CHATGLM-6B是什么&#xff1f; ChatGLM-6B是清华大学知识工程和数据挖掘小组&#xff08;Knowledge Engineering Group (KEG) & Data Mining at Tsinghua University&#xff09;发布的一个开源的对话机器人。根据官方介绍&#xff0c;这是…

网络互联与互联网 - TCP 协议详解

文章目录 1 概述2 TCP 传输控制协议2.1 报文格式2.2 三次握手&#xff0c;建立连接2.3 四次挥手&#xff0c;释放连接 3 扩展3.1 实验演示3.2 网工软考 1 概述 在 TCP/IP 协议簇 中有两个传输协议 TCP&#xff1a;Transmission Control Protocol&#xff0c;传输控制协议&…

vue3 实现按钮权限管理

在做后台管理系统时&#xff0c;经常会有权限管理的功能&#xff0c;这里来记录一下关于按钮权限管理的实现方法 1、自定义指令 v-permission。新建js文件用来写指令代码。 export default function btnPerms(app) {app.directive(permission, {mounted(el, binding) {if (!p…

Pixar、Adobe 和苹果等成立 OpenUSD 联盟推行 3D 内容开放标准

导读Pixar、Adobe、Apple、Autodesk 与 NVIDIA 联手 Linux 基金会旗下的联合开发基金会&#xff08;JDF&#xff09;宣布建立 OpenUSD 联盟&#xff08;AOUSD&#xff09;以推行 Pixar 创建的通用场景描述技术的标准化、开发、进化和发展。 联盟寻求通过推进开放式通用场景描述…

Linux下的系统编程——makefile入门

前言&#xff1a; 或许很多Winodws的程序员都不知道这个东西&#xff0c;因为那些Windows的IDE都为你做了这个工作&#xff0c;但我觉得要作一个好的和professional的程序员&#xff0c;makefile还是要懂。这就好像现在有这么多的HTML的编辑器&#xff0c;但如果你想成为一个专…

Matplotlib数据可视化(五)

目录 1.绘制折线图 2.绘制散点图 3.绘制直方图 4.绘制饼图 5.绘制箱线图 1.绘制折线图 import matplotlib.pyplot as plt import numpy as np %matplotlib inline x np.arange(9) y np.sin(x) z np.cos(x) # marker数据点样式&#xff0c;linewidth线宽&#xff0c;li…