TensorRT推理手写数字分类(三)

系列文章目录

(一)使用pytorch搭建模型并训练
(二)将pth格式转为onnx格式
(三)onxx格式转为engine序列化文件并进行推理


文章目录

  • 系列文章目录
  • 前言
  • 一、TensorRT是什么?
  • 二、如何通过onnx生成engine
    • 使用trtexec生成engine
    • 使用python接口
  • 三、进行推理
  • 总结


前言

  上一节我们已经成功搭从pth文件转为onnx格式的文件,并对导出的onnx文件进行了验证,结果并无问题。这一节我们就从这个onnx文件入手,一步一步生成engine文件并使用tensorrt进行推理。


一、TensorRT是什么?

  NVIDIA TensorRT™ 是用于高性能深度学习推理的 SDK。此 SDK 包含深度学习推理优化器和运行时环境,可为深度学习推理应用提供低延迟和高吞吐量。通俗来说,TensorRT是NVIDIA针对自家GPU开发出来的一个推理框架,它使用了一些算法和操作来优化网络推理性能,提高深度学习模型在GPU上的推理速度。
在这里插入图片描述
我们使用TensorRT这个框架可以加快我们手写数字分类模型的推理速度。
TensorRT的安装方式我之前也写过一期博客:参考这里。

这里我们假设已经安装好了TensorRT,我这里安装的版本是TensorRT-8.0.1.6。在生成engine文件之前,先介绍一个很有用的工具trtexec。trtexec是一个命令行工具,它可以帮助我们不用写代码就可以生成engine,以及很多其他有用的功能,感兴趣的读者可以自己探索,这里我们只使用几种常见的命令行参数。
有关trtexec的详细参数可以参考这篇博客。

二、如何通过onnx生成engine

  整理一下,我们现在已经有了onnx文件,并且安装好了tensorrt,现在我们的目的是通过生成engine文件。onnx文件之前我们我们已经介绍过了它是一个什么东西,那engine文件又是什么呢?

TensorRT中的engine文件是一个二进制文件,它包含了一个经过优化的深度学习模型。这个文件可以被用来进行推理,而不需要重新加载和优化模型。在使用TensorRT进行推理时,首先需要将训练好的模型转换为TensorRT engine文件,然后使用这个文件进行推理。

也就是说,我们只需先生成一次engine,这个engine文件包含了优化后的模型(这个优化是TensoRT自己做的)。在以后进行推理的时候,我们只需要加载这个engine即可,而不需要重头开始。

使用trtexec生成engine

TensorRT-8.0.1.6/bin/trtexec --onnx=model.onnx --saveEngine=model.engine --buildOnly

在命令行输入这行指令即可帮助我们生成model.engine。trtexec命令还有许多其他的参数,感兴趣自行了解,这里我们只使用了–onnx,表示输入的是onnx文件,–saveEngine表示存储engine文件,–buildOnly表示只构建,不进行推理。

使用python接口

代码如下(示例):

import os
import tensorrt as trtonnx_file = '/home/wjq/wjqHD/pytorch_mnist/model.onnx'
nHeight, nWidth = 28, 28
trtFile = '/home/wjq/wjqHD/pytorch_mnist/model.engine'# Parse network, rebuild network, and build engine, then save engine
logger = trt.Logger(trt.Logger.VERBOSE)builder = trt.Builder(logger)network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config = builder.create_builder_config()parser = trt.OnnxParser(network, logger)if not os.path.exists(onnx_file):print('ONNX file {} not found.'.format(onnx_file))exit()
print("Loading ONNX file from path {}...".format(onnx_file))with open(onnx_file, 'rb') as model:if not parser.parse(model.read()):print('ERROR: Failed to parse the ONNX file.')for error in range(parser.num_errors):print(parser.get_error(error))exit()print("Succeed to parse the ONNX file.")input_tensor = network.get_input(0)
# 这是输入大小
profile.set_shape(input_tensor.name, [1, 1, nHeight, nWidth], [1, 1, nHeight, nWidth], [1, 1, nHeight, nWidth])
config.add_optimization_profile(profile)engineString = builder.build_serialized_network(network, config)  # 序列化engine文件
if engineString == None:print("Failed building engine!")exit()
print("Succeeded building engine!")
with open(trtFile, "wb") as f:f.write(engineString)

使用上述的python代码,最终我们也可以生成一个engine文件。这段代码里面的api,大家可以具体去google寻找解释,我在这里只是展示了一种可能。如有问题,欢迎评论区沟通。

我们也可以使用trtexec工具来验证我们生成的engine是否正确,命令行指令为:

TensorRT-8.0.1.6/bin/trtexec --loadEngine=model.engine --exportProfile=layerProfile.json --batch=1 --warmUp=1000 --verbose

–loadEngine为加载的engine文件路径,–exportProfile这个参数可以输出网络中每一层运行的平均时间以及占总时间的百分数,–verbose为打印日志,–warmUp为提前显卡预热。

三、进行推理

  我们已经得到了model.engine文件,最后一步我们要使用tensorrt的接口读取engine文件和图像文件进行推理得到最终的分类结果。
  由于我的环境现在无法安装pycuda和cuda的python包,所以最后推理的这一步等环境妥当,再补上。

总结

  本节我们介绍了如将使用trtexec工具和python代码通过onnx生成engine文件,并使用tensorrt的api接口调用engine文件进行推理。TensorRT推理手写数字分类总共三节,笼统地介绍了部署一个深度学习模型的流程,希望大家能有所收获。接下来如果有时间准备更新另一个工作:pytorch遇到不支持的算子,tensorrt遇到不支持的算子,onnx遇到不支持的算子该怎么办。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/104506.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为云CodeArts Snap 智能编程助手PyCharm实验手册. 插件安装与使用指南

作为一款自主创新的AI代码辅助编程工具&#xff0c;华为云智能编程助手CodeArts Snap目标打造现代化开发新范式。通过将自然语言转化为规范可阅读、无开源漏洞的安全编程语言&#xff0c;提升开发者编程效率&#xff0c;助力企业快速响应市场需求。华为云CodeArts Snap现进入邀…

Python Opencv实践 - 图像直方图均衡化

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape)#图像直方图计算 #cv.calcHist(images, channels, mask, histSize, ranges, hist, accumulate) #images&…

Android中使用JT808协议进行车载终端通信的实现和优化

JT808是一种在中国广泛应用的车载终端通信协议&#xff0c;用于车辆与监控中心之间的数据通信。下面是关于Android平台上使用JT808协议进行通信的一般步骤和注意事项&#xff1a; 协议了解&#xff1a;首先&#xff0c;您需要详细了解JT808协议的规范和定义。该协议包含了通信消…

高速道路监控:工业路由器助力高速监控远程管理与维护

工业路由器在物联网应用中扮演着重要的角色。物联网的发展使得大量设备和传感器能够互联互通&#xff0c;而工业路由器作为连接这些设备和网络的中间桥梁&#xff0c;承担着数据传输和安全管理的重要责任。 工业路由器能够为高速监控提供网络功能&#xff0c;实现户外无线网络部…

基于Java+SpringBoot+vue前后端分离高校办公室行政事务管理系统设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

selenium案例之RAM 用户登录 aliyun

文章目录 0x00 Selenium0x01 整体流程 思路1.1 打开浏览器并且访问 登录页面 url: https://signin.aliyun.com/login.htm#/main1.2 定位 "用户名" input 和 "下一步" button 点击下一步1.3 定位 "密码" input 和 "登录" button 点击登…

《Linux从练气到飞升》No.17 进程创建

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的…

Stable Diffusion web UI 部署详细教程

前言 本文使用 AutoDL 平台进行 Stable Diffusion web UI 云端部署 AutoDL 官网&#xff1a;AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDL Stable Diffusion web UI 官网&#xff1a;AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI (github.com) 步…

poi带表头多sheet导出

导出工具类 package com.hieasy.comm.core.excel;import com.hieasy.comm.core.excel.fragment.ExcelFragment; import com.hieasy.comm.core.utils.mine.MineDateUtil; import org.apache.poi.hssf.usermodel.*; import org.apache.poi.ss.usermodel.*; import org.apache.po…

Cesium 使用 Entity 绘制点线面

文章目录 一、绘制点1. 第一种2. 第二种 二、绘制面三、绘制线四、移除 Entity <!--* Author: HuKang* Date: 2023-08-18 11:06:43* LastEditTime: 2023-08-25 09:16:59* LastEditors: HuKang* Description: program-c* FilePath: \global-data-display\src\views\program-c…

深度学习-实验1

一、Pytorch基本操作考察&#xff08;平台课专业课&#xff09; 使用&#x1d413;&#x1d41e;&#x1d427;&#x1d42c;&#x1d428;&#x1d42b;初始化一个 &#x1d7cf;&#x1d7d1;的矩阵 &#x1d474;和一个 &#x1d7d0;&#x1d7cf;的矩阵 &#x1d475;&am…

深度学习处理文本(NLP)

文章目录 引言1. 反向传播1.1 实例流程实现1.2 前向传播1.3 计算损失1.4 反向传播误差1.5 更新权重1.6 迭代1.7 BackPropagation & Adam 代码实例 2. 优化器 -- Adam2.1 Adam解析2.2 代码实例 3. NLP任务4. 神经网络处理文本4.1 step1 字符数值化4.2 step 2 矩阵转化为向量…

【数据结构练习】单链表OJ题(一)

目录 一、移除链表元素思路1&#xff1a;思路2&#xff1a; 二、反转链表三、链表的中间节点四、链表中倒数第k个节点五、回文结构六、合并两个有序链表 一、移除链表元素 题目&#xff1a; 思路1&#xff1a; 在原来的链表上进行修改&#xff0c;节点的数据是val的删除&am…

Redis三种持久化方式详解

一、Redis持久性 Redis如何将数据写入磁盘 持久性是指将数据写入持久存储&#xff0c;如固态磁盘&#xff08;SSD&#xff09;。Redis提供了一系列持久性选项。其中包括&#xff1a; RDB&#xff08;快照&#xff09;&#xff1a;RDB持久性以指定的时间间隔执行数据集的时间点…

数据结构(7)

B树 B树中允许一个节点拥有多个key。设定参数M&#xff0c;构造B树 1.每个结点最多右M-1个key&#xff0c;并且以升序排列 2.每个结点最多右M个子结点 3.根节点至少右两个子结点 通过磁盘预读&#xff0c;将数据放到B树中&#xff0c;3层B树可容纳1024*1024*1024差不多10亿…

自动化部署及监测平台基本架构

声明 本文是学习 政务计算机终端核心配置规范. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 核心配置自动化部署及监测技术要求 自动化部署及监测平台基本架构 对于有一定规模的政务终端核心配置应用&#xff0c;需要配备自动化部署及监测平台&am…

element plus 的图片上传组件回显

element图片回显是通过修改file-list属性的url属性实现的。 <!-- 图片上传 --><el-form-item label"景区图片" prop"s_img"><el-uploadlist-type"picture-card":action"网址":on-change"handleChange":befor…

机器学习理论笔记(二):数据集划分以及模型选择

文章目录 1 前言2 经验误差与过拟合3 训练集与测试集的划分方法3.1 留出法&#xff08;Hold-out&#xff09;3.2 交叉验证法&#xff08;Cross Validation&#xff09;3.3 自助法&#xff08;Bootstrap&#xff09; 4 调参与最终模型5 结语 1 前言 欢迎来到蓝色是天的机器学习…

探索最短路径问题:寻找优化路线的算法解决方案

1. 前言&#xff1a;最短路径问题的背景与重要性 在现实生活中&#xff0c;我们常常面临需要找到最短路径的情况&#xff0c;如地图导航、网络路由等。最短路径问题是一个关键的优化问题&#xff0c;涉及在图中寻找两个顶点之间的最短路径&#xff0c;以便在有限时间或资源内找…

VUE调用高德地图之电子围栏

最近项目上电子围栏功能&#xff0c;就是地图上限定的区域内实现限行功能&#xff0c;用我们身边的事物来举例&#xff0c;共享单车的限行、限停区域就是电子围栏。由此可见&#xff0c;电子围栏最基础的做法就是在地图上实现多边形覆盖物。 效果图大概如下&#xff1a; 照例…