第11章:根据 ShuffleNet V2 迁移学习医学图像分类任务:甲状腺结节检测

目录

1. Shufflenet V2

2. 甲状腺结节检测

2.1 数据集

2.2 训练参数

2.3 训练结果

2.4 可视化网页推理

3. 下载


1. Shufflenet V2

shufflenet v2 论文中提出衡量轻量级网络的性能不能仅仅依靠FLOPs计算量,还应该多方面的考虑,例如MAC(memory access cost),还应该比较在不同的硬件设备下的性能等等

因此,基于多方面的考虑。shufflenet v2 通过大量的实验和测试总结了轻量化网络的四个准则,然后根据这四条准则搭建了shufflenet v2网络

 

  1.  输入输出通道个数相同的时候,内存访问量MAC最小
  2. 分组卷积的分组数过大会增加MAC
  3. 碎片化操作会并行加速并不友好
  4. element-wise 操作带来的内存和耗时不可以忽略

每条原则的具体解释参考:ShuffleNet V2 迁移学习对花数据集训练_shufflenetv2进行预训练的效果-CSDN博客

2. 甲状腺结节检测

Shufflenet V2 实现的model部分代码如下面所示,这里如果采用官方预训练权重的话,会自动导入官方提供的最新版本的权重

这里提供了4种网络结构,分别对应output channels参数

2.1 数据集

数据集文件如下:

标签如下:

{"0": "0","1": "1"
}

其中,训练集的总数为5103,验证集的总数为2185

2.2 训练参数

训练的参数如下:

    parser.add_argument("--model", default='x0_5', type=str,help='x0_5,x1_0,x1_5,x2_0')parser.add_argument("--pretrained", default=True, type=bool)       # 采用官方权重parser.add_argument("--freeze_layers", default=True, type=bool)    # 冻结权重parser.add_argument("--batch-size", default=8, type=int)parser.add_argument("--epochs", default=10, type=int)parser.add_argument("--optim", default='SGD', type=str,help='SGD,Adam,AdamW')         # 优化器选择parser.add_argument('--lr', default=0.01, type=float)parser.add_argument('--lrf',default=0.001,type=float)                  # 最终学习率 = lr * lrfparser.add_argument('--save_ret', default='runs', type=str)             # 保存结果parser.add_argument('--data_train',default='./data/train',type=str)           # 训练集路径parser.add_argument('--data_val',default='./data/val',type=str)               # 测试集路径

需要注意的是网络分类的个数不需要指定,摆放好数据集后,代码会根据数据集自动生成!

网络模型信息如下:

{"train parameters": {"model": "x0_5","pretrained": true,"freeze_layers": true,"batch_size": 8,"epochs": 10,"optim": "SGD","lr": 0.01,"lrf": 0.001,"save_folder": "runs"},"dataset": {"trainset number": 5103,"valset number": 2185,"number classes": 2},"model": {"total parameters": 343842.0,"train parameters": 2050,"flops": 43550112.0},

2.3 训练结果

所有的结果都保存在 save_ret 目录下,这里是 runs 

weights 下有最好和最后的权重,在训练完成后控制台会打印最好的epoch

这里只展示部分结果:可以看到网络没有完全收敛,增大epoch会得到更好的效果

训练日志:

    "epoch:9": {"train info": {"accuracy": 0.6607877718975881,"0": {"Precision": 0.6989,"Recall": 0.4334,"Specificity": 0.8471,"F1 score": 0.535},"1": {"Precision": 0.646,"Recall": 0.8471,"Specificity": 0.4334,"F1 score": 0.733},"mean precision": 0.67245,"mean recall": 0.64025,"mean specificity": 0.64025,"mean f1 score": 0.634},"valid info": {"accuracy": 0.5711670480523059,"0": {"Precision": 0.5455,"Recall": 0.2866,"Specificity": 0.8043,"F1 score": 0.3758},"1": {"Precision": 0.5791,"Recall": 0.8043,"Specificity": 0.2866,"F1 score": 0.6734},"mean precision": 0.5623,"mean recall": 0.54545,"mean specificity": 0.54545,"mean f1 score": 0.5246}}

 

训练集和测试集的混淆矩阵:

2.4 可视化网页推理

推理是指没有标签,只有图片数据的情况下对数据的预测,这里使用了网页推理

值得注意的是,如果训练了自己的数据集,需要对infer脚本进行更改,如下:

  • 都需要绝对路径,这个是代码自动生成的类别文件,在runs下
  • IMAGE_PATH 是默认展示的demo图片位置

在控制台输入下面命令即可:

streamlit run D:\project\shufflenetV2\infer.py

 

3. 下载

关于本项目代码和数据集、训练结果的下载:

计算机视觉项目:计算机视觉项目:ShufflenetV2模型实现的图像识别项目:甲状腺结节识别资源-CSDN文库

关于Ai 深度学习图像识别、医学图像分割改进系列:AI 改进系列_听风吹等浪起的博客-CSDN博客

神经网络改进完整实战项目:改进系列_听风吹等浪起的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10465.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AJAX案例——图片上传个人信息操作

黑马程序员视频地址&#xff1a; AJAX-Day02-11.图片上传https://www.bilibili.com/video/BV1MN411y7pw?vd_source0a2d366696f87e241adc64419bf12cab&spm_id_from333.788.videopod.episodes&p26 图片上传 <!-- 文件选择元素 --><input type"file"…

AI DeepSeek-R1 Windos 10 环境搭建

1、安装&#xff1a; 下载 Python |Python.org CUDA Drivers for MAC Archive | NVIDIA pip 和virtualenv Download Ollama on Windows 如下图 2、下载模型 deepseek-r1 ollama run deepseek-r1 或者可以ollama run deepseek-r1:8b 或 3、安装一个可视化对话Chatbox 下载 …

【AI绘画】MidJourney关键词{Prompt}全面整理

AI绘画整理&#xff0c;MidJourney关键词。喜欢AI绘画的朋友必备&#xff0c;建议收藏&#xff0c;后面用到时供查阅使用。 1、光线与影子篇 中 英 闪耀的霓虹灯 shimmeringneon lights 黑暗中的影子 shadows in the dark 照亮城市的月光 moonlightilluminatingthe cit…

剑指offer 数组 持续更新中...

文章目录 1. 数组中重复的数字1.1 问题描述1.2 方法1: 排序1.3 方法2: 哈希表1.4 方法3: 原地交换 2. 寻找重复数2.1 问题描述2.2 方案1&#xff0c;使用辅助数组2.3 方案2&#xff0c;使用二分 3. 二维数组的查找3.2 方案1&#xff0c;贪心 4. 合并两个有序数组4.1 问题描述4.…

SQLAlchemy 2.0的简单使用教程

SQLAlchemy 2.0相比1.x进行了很大的更新&#xff0c;目前网上的教程不多&#xff0c;以下以链接mysql为例介绍一下基本的使用方法 环境及依赖 Python:3.8 mysql:8.3 Flask:3.0.3 SQLAlchemy:2.0.37 PyMySQL:1.1.1使用步骤 1、创建引擎&#xff0c;链接到mysql engine crea…

nodejs:express + js-mdict 网页查询英汉词典

向 DeepSeek R1 提问&#xff1a; 我想写一个Web 前端网页&#xff0c;后台用 nodejs js-mdict, 实现在线查询英语单词 1. 项目结构 首先&#xff0c;创建一个项目目录&#xff0c;结构如下&#xff1a; mydict-app/ ├── public/ │ ├── index.html │ ├── st…

23.Word:小王-制作公司战略规划文档❗【5】

目录 NO1.2.3.4 NO5.6​ NO7.8.9​ NO10.11​ NO12​ NO13.14 NO1.2.3.4 布局→页面设置对话框→纸张&#xff1a;纸张大小&#xff1a;宽度/高度→页边距&#xff1a;上下左右→版式&#xff1a;页眉页脚→文档网格&#xff1a;勾选只指定行网格✔→ 每页&#xff1a;…

联想拯救者R720笔记本外接显示屏方法,显示屏是2K屏27英寸

现在某品牌的13/14代&#xff08;CPU是13或14开头&#xff09;CPU缩肛有设计质量问题、CPU容易氧化易损坏易蓝屏等问题&#xff0c;现在大家买笔记本或台式电脑请不要考虑这两代CPU&#xff0c;或考虑AMD的CPU。 晚上23点10分前下单&#xff0c;第二天上午显示屏送到&#xff…

从0到1:C++ 开启游戏开发奇幻之旅(二)

目录 游戏开发核心组件设计 游戏循环 游戏对象管理 碰撞检测 人工智能&#xff08;AI&#xff09; 与物理引擎 人工智能 物理引擎 性能优化技巧 内存管理优化 多线程处理 实战案例&#xff1a;开发一个简单的 2D 射击游戏 项目结构设计 代码实现 总结与展望 游戏…

QT简单实现验证码(字符)

0&#xff09; 运行结果 1&#xff09; 生成随机字符串 Qt主要通过QRandomGenerator类来生成随机数。在此之前的版本中&#xff0c;qrand()函数也常被使用&#xff0c;但从Qt 5.10起&#xff0c;推荐使用更现代化的QRandomGenerator类。 在头文件添加void generateRandomNumb…

C++,STL 命名空间:理解 std 的作用、规范与陷阱

文章目录 引言一、为什么需要 std 命名空间&#xff1f;二、std 命名空间的组成三、使用 std 命名空间的正确姿势1. 显式作用域限定2. 谨慎使用 using 声明3. 头文件中禁止 using namespace std 四、常见陷阱与解决方案陷阱 1&#xff1a;与第三方库命名冲突陷阱 2&#xff1a;…

UE5 GAS RPG Character Classes

在正常的游戏中&#xff0c;我们应该考虑如何去初始化角色属性&#xff0c;并且要给角色分好类型。比如&#xff0c;在我们游戏中&#xff0c;我们如何去初始化小兵的属性&#xff0c;并且还要实现小兵随着等级的增长而增加属性。而且就是小兵也有类型的区分&#xff0c;比如我…

RRT_STAR路径规划代码

这是一段使用MATLAB编写的代码&#xff0c;实现了一个基于RRT*&#xff08;Rapidly-exploring Random Trees Star&#xff09;算法的路径规划。RRT*是一种用于在配置空间中搜索路径的采样算法&#xff0c;常用于机器人路径规划等领域。以下是代码的主要功能和结构&#xff1a; …

常见“栈“相关题目

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a; 优选算法专题 目录 1047.删除字符串中的所有相邻重复项 844.比较含退格的字符串 227.基本计算器 II 394.字符串解码 946.验证栈序列 104…

窥探目标文件

文章目录 源文件如何变成可执行文件编译链接目标文件格式ELF文件格式节表重定位表(.rela)符号表(.symtab)符号(链接的接口)强符号与弱符号强引用与弱引用符号表表项符号类型和绑定信息符号所在段其他节源文件如何变成可执行文件 CPU只能执行二进制指令,无法执行用户直接编写的…

22.Word:小张-经费联审核结算单❗【16】

目录 NO1.2 NO3.4​ NO5.6.7 NO8邮件合并 MS搜狗输入法 NO1.2 用ms打开文件&#xff0c;而不是wps❗不然后面都没分布局→页面设置→页面大小→页面方向→上下左右&#xff1a;页边距→页码范围&#xff1a;多页&#xff1a;拼页光标处于→布局→分隔符&#xff1a;分节符…

java求职学习day23

MySQL 单表 & 约束 & 事务 1. DQL操作单表 1.1 创建数据库,复制表 1) 创建一个新的数据库 db2 CREATE DATABASE db2 CHARACTER SET utf8; 2) 将 db1 数据库中的 emp 表 复制到当前 db2 数据库 1.2 排序 通过 ORDER BY 子句 , 可以将查询出的结果进行排序 ( 排序只…

你了解哪些Java限流算法?

大家好&#xff0c;我是锋哥。今天分享关于【你了解哪些Java限流算法?】面试题。希望对大家有帮助&#xff1b; 你了解哪些Java限流算法? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Java 中常用的限流算法主要有以下几种&#xff0c;它们广泛应用于处理流量控…

【HarmonyOS之旅】基于ArkTS开发(三) -> 兼容JS的类Web开发(二)

目录 1 -> HML语法 1.1 -> 页面结构 1.2 -> 数据绑定 1.3 -> 普通事件绑定 1.4 -> 冒泡事件绑定5 1.5 -> 捕获事件绑定5 1.6 -> 列表渲染 1.7 -> 条件渲染 1.8 -> 逻辑控制块 1.9 -> 模板引用 2 -> CSS语法 2.1 -> 尺寸单位 …

51单片机CLD1602显示万年历+闹钟+农历+整点报时

1. 硬件设计 硬件是我自己设计的一个通用的51单片机开发平台&#xff0c;可以根据需要自行焊接模块&#xff0c;这是用立创EDA画的一个双层PCB板&#xff0c;所以模块都是插针式&#xff0c;不是表贴的。电路原理图在文末的链接里&#xff0c;PCB图暂时不选择开源。 B站上传的…