【2024华为OD-E卷-100分-箱子之字形摆放】((题目+思路+JavaC++Python解析)

题目描述

给定一个宽度为 width 的仓库,要求将 n 个箱子按之字形(Zigzag)方式摆放。每个箱子的宽度都是 1,箱子必须摆放在仓库的同一层上,且摆放过程中不能重叠。

之字形摆放的定义是:箱子交替地向左和向右对齐。即第1行从左对齐,第2行从右对齐,第3行再次从左对齐,以此类推。

需要输出按之字形摆放箱子后,每一层的最大高度。

输入

  • 第一行包含两个整数 n 和 width,分别表示箱子的数量和仓库的宽度。
  • 第二行包含 n 个整数,表示每个箱子的高度。

输出

  • 输出一个整数数组,表示每一层的最大高度。

示例

输入

6 4
2 3 4 1 2 3

输出

[4 3 3]

解释

仓库宽度为4,6个箱子按之字形摆放如下:

2 3 4 1
      2
      3

每一层的最大高度分别是:4、3、3。

思路

  1. 计算层数:由于箱子是按之字形摆放,我们可以计算出所需的层数。层数可以通过 ceil(n / width) 计算得到,其中 ceil 表示向上取整。
  2. 记录每层的最大高度:使用一个数组来记录每一层的最大高度。
  3. 遍历箱子:按序遍历每个箱子,计算其在第几层以及是向左还是向右对齐。
  4. 更新当前层的最大高度:根据箱子的当前位置和高度,更新对应层的最大高度。

Java 实现

import java.util.*;

public class ZigzagBoxes {
    public static int[] getMaxHeights(int n, int width, int[] heights) {
        int layers = (int) Math.ceil((double) n / width);
        int[] maxHeights = new int[layers];

        for (int i = 0; i < n; i++) {
            int layer = i / width;
            int positionInLayer = i % width;
            boolean leftAligned = layer % 2 == 0;

            int columnIndex = leftAligned ? positionInLayer : width - 1 - positionInLayer;
            maxHeights[layer] = Math.max(maxHeights[layer], heights[i]);

            // To keep track of the effective max height at each "virtual" column position within the layer
            // (for debugging/visualization purposes, not needed for final solution)
            // This part is commented out as it's not required by the problem statement
            /*
            if (leftAligned) {
                // Left-aligned layer visualization (not needed for solution)
                System.out.print(heights[i] + " ");
            } else {
                // Right-aligned layer visualization with adjusted indexing (not needed for solution)
                System.out.print(heights[i] + " ".repeat(width - positionInLayer - 1));
                System.out.print(heights[i] + " | ");
            }
            if ((i + 1) % width == 0) System.out.println();
            */
        }

        return maxHeights;
    }

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int width = scanner.nextInt();
        int[] heights = new int[n];
        for (int i = 0; i < n; i++) {
            heights[i] = scanner.nextInt();
        }
        int[] result = getMaxHeights(n, width, heights);
        for (int height : result) {
            System.out.print(height + " ");
        }
    }
}

C++ 实现

#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>

std::vector<int> getMaxHeights(int n, int width, const std::vector<int>& heights) {
    int layers = std::ceil(static_cast<double>(n) / width);
    std::vector<int> maxHeights(layers, 0);

    for (int i = 0; i < n; ++i) {
        int layer = i / width;
        int positionInLayer = i % width;
        bool leftAligned = layer % 2 == 0;

        int columnIndex = leftAligned ? positionInLayer : width - 1 - positionInLayer;
        // Note: columnIndex is used here just for logical understanding,
        // but actually we directly update the max height of the current layer
        maxHeights[layer] = std::max(maxHeights[layer], heights[i]);
    }

    return maxHeights;
}

int main() {
    int n, width;
    std::cin >> n >> width;
    std::vector<int> heights(n);
    for (int i = 0; i < n; ++i) {
        std::cin >> heights[i];
    }
    std::vector<int> result = getMaxHeights(n, width, heights);
    for (int height : result) {
        std::cout << height << " ";
    }
    return 0;
}

Python 实现

def get_max_heights(n, width, heights):
    layers = math.ceil(n / width)
    max_heights = [0] * layers

    for i in range(n):
        layer = i // width
        position_in_layer = i % width
        left_aligned = layer % 2 == 0

        column_index = position_in_layer if left_aligned else width - 1 - position_in_layer
        # Note: column_index is not used directly in final calculations,
        # but helps in understanding the logical arrangement
        max_heights[layer] = max(max_heights[layer], heights[i])

    return max_heights

import math
import sys
input = sys.stdin.read
data = input().split()

n = int(data[0])
width = int(data[1])
heights = list(map(int, data[2:n+2]))

result = get_max_heights(n, width, heights)
print(" ".join(map(str, result)))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/13329.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【漫画机器学习】082.岭回归(或脊回归)中的α值(alpha in ridge regression)

岭回归&#xff08;Ridge Regression&#xff09;中的 α 值 岭回归&#xff08;Ridge Regression&#xff09;是一种 带有 L2​ 正则化 的线性回归方法&#xff0c;用于处理多重共线性&#xff08;Multicollinearity&#xff09;问题&#xff0c;提高模型的泛化能力。其中&am…

深入理解和使用定时线程池ScheduledThreadPoolExecutor

文章目录 前言认识定时线程池什么是定时线程池&#xff1f;定时线程池基本API使用定时线程池的应用场景1、定时任务调度2、缓存过期清理3、心跳检测4、延迟任务执行 定时线程池scheduleAtFixedRate与scheduleWithFixedDelay区别scheduleAtFixedRate案例demo&#xff08;period&…

【React】合成事件语法

React 合成事件是 React 为了处理浏览器之间的事件差异而提供的一种跨浏览器的事件系统。它封装了原生的 DOM 事件&#xff0c;提供了一致的事件处理机制。 合成事件与原生事件的区别&#xff1a; 合成事件是 React 自己实现的&#xff0c;封装了原生事件。合成事件依然可以通…

中小企业的采购流程,采购管理是如何进行的?

经营中小企业的&#xff0c;都明白高效采购管理的重要性。我见过不少中小企业&#xff0c;采购环节混乱无序&#xff0c;花费大量成本&#xff0c;却难以保障物资的优质供应。然而到底该如何梳理采购流程&#xff0c;怎样开展采购管理工作呢&#xff1f;这让众多中小企业主愁眉…

在线教程丨YOLO系列10年更新11个版本,最新模型在目标检测多项任务中达SOTA

YOLO (You Only Look Once) 是计算机视觉领域中最具影响力的实时目标检测算法之一&#xff0c;以其高精度与高效性深受业界青睐&#xff0c;广泛应用于自动驾驶、安防监控、医疗影像等领域。 该模型最早于 2015 年由华盛顿大学研究生 Joseph Redmon 发布&#xff0c;开创了将目…

IOPS与吞吐量、读写块大小及延迟之间的关系

IOPS&#xff08;每秒输入/输出操作次数&#xff09;、吞吐量、读写块大小及延迟是衡量存储系统性能的四个关键指标&#xff0c;它们之间存在密切的关系。以下从多个方面详细说明这些指标之间的关系&#xff1a; 1. IOPS与吞吐量的关系 公式关系&#xff1a;吞吐量&#xff0…

DeepSeek 部署过程中的问题

文章目录 DeepSeek 部署过程中的问题一、部署扩展&#xff1a;docker 部署 DS1.1 部署1.2 可视化 二、问题三、GPU 设置3.1 ollama GPU 的支持情况3.2 更新 GPU 驱动3.3 安装 cuda3.4 下载 cuDNN3.5 配置环境变量 四、测试 DeepSeek 部署过程中的问题 Windows 中 利用 ollama 来…

DeepSeek RAGFlow构建本地知识库系统

学习目标 DeepSeek RAGFlow 构建本地知识库系统 学习内容 下载安装Docker 1.1 Docker 是什么 1.2 下载Docker 1.3 安装Docker配置DockerRAGFlow 配置 3.1 下载RAGFlow 3.2 RAGFlow配置 3.3 启动RAGFlow Docker新建知识库 4.1 查看本机IP 4.2 OLLAMA_HOST 变量配置 4.3 添加模…

11 享元(Flyweight)模式

享元模式 1.1 分类 &#xff08;对象&#xff09;结构型 1.2 提出问题 做一个车管所系统&#xff0c;将会产生大量的车辆实体&#xff0c;如果每一个实例都保存自己的所有信息&#xff0c;将会需要大量内存&#xff0c;甚至导致程序崩溃。 1.3 解决方案 运用共享技术有效…

arcgis for js范围内天地图高亮,其余底图灰暗

在GIS地图开发中&#xff0c;有时我们需要突出显示某个特定区域&#xff0c;而将其他区域灰暗处理&#xff0c;以达到视觉上的对比效果。本文将介绍如何使用ArcGIS for JavaScript实现这一功能&#xff0c;具体效果为&#xff1a;在指定范围内&#xff0c;天地图高亮显示&#…

Spring AI + Ollama 实现 DeepSeek-R1 API 服务和调用

随着大语言模型的快速发展&#xff0c;越来越多的开发者开始探索如何将这些强大的推理模型本地化运行。DeepSeek-R1&#xff0c;作为一款性能卓越的开源AI模型&#xff0c;以其低成本和出色的推理能力在技术圈内引起了广泛关注。本文将详细介绍如何使用Ollama部署DeepSeek-R1&a…

Ubuntu 20.04配置网络

1&#xff0c;检查自己网络是否配通。 网络配置成功显示的网络图标 不成功的网络图标 如果看不见网络图标&#xff0c;可以使用ping命令。连接一下百度网。 ping www.baidu.com ping失败的样子 ping成功的样子 2&#xff0c;接下来进入正题&#xff0c;我们开始配置网络。 这…

ElasticSearch入门

目录 1._cat 2.索引一个 document 3.查询document 4.更新document 5.删除document 或 index 6.批量_bulk API 1._cat Get/_cat/nodes 查看所有节点 Get/_cat/indices 查看所有索引&#xff08;indices &#xff1a;index的复数) Get/_cat/master 查看…

java练习(8)

ps:题目来自力扣 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素。元素的顺序可能发生改变。然后返回 nums 中与 val 不同的元素的数量。 假设 nums 中不等于 val 的元素数量为 k&#xff0c;要通过此题&#xff0c;您需要执行以下操作…

Java常用类

文章目录 包装类(Wrapper)包装类的继承体系装箱和拆箱包装类与String类型的相互转换 String类创建 String 对象的两种方式String 类的常见方法案例演示 StringBuffer类类的继承体系String VS StringBufferStringBuffer构造器String 和 StringBuffer 相互转换StringBuffer 类常见…

算法设计与分析三级项目--管道铺设系统

摘 要 该项目使用c算法逻辑&#xff0c;开发环境为VS2022&#xff0c;旨在通过Prim算法优化建筑物间的连接路径&#xff0c;以支持管线铺设规划。可以读取文本文件中的建筑物名称和距离的信息&#xff0c;并计算出建筑物之间的最短连接路径和总路径长度&#xff0c;同时以利用…

【C语言系列】深入理解指针(5)

深入理解指针&#xff08;5&#xff09; 一、sizeof和strlen的对比1.1sizeof1.2strlen1.3sizeof和strlen的对比 二、数组和指针笔试题解析2.1 一维数组2.2 字符数组2.2.1代码1&#xff1a;2.2.2代码2&#xff1a;2.2.3代码3&#xff1a;2.2.4代码4&#xff1a;2.2.5代码5&#…

设计模式——策略模式

设计模式——策略模式 简单介绍一个例子 策略模式是设计模式里面比较简单的设计模式&#xff0c;其特点简单又实用&#xff0c;并且可以让你的代码看起来高大上&#xff0c;维护代码时还方便扩张 多重条件语句不易维护&#xff0c;而使用策略模式可以避免使用多重条件语句&…

【玩转 Postman 接口测试与开发2_018】第14章:利用 Postman 初探 API 安全测试

《API Testing and Development with Postman》最新第二版封面 文章目录 第十四章 API 安全测试1 OWASP API 安全清单1.1 相关背景1.2 OWASP API 安全清单1.3 认证与授权1.4 破防的对象级授权&#xff08;Broken object-level authorization&#xff09;1.5 破防的属性级授权&a…

MySQL的 MVCC详解

MVCC是多版本并发控制&#xff0c;允许多个事务同时读取和写入数据库&#xff0c;而无需互相等待&#xff0c;从而提高数据库的并发性能。 在 MVCC 中&#xff0c;数据库为每个事务创建一个数据快照。每当数据被修改时&#xff0c;MySQL不会立即覆盖原有数据&#xff0c;而是生…