opencv-全景图像拼接

运行环境

python3.6 + opencv 3.4.1.15

stitcher.py

import numpy as np
import cv2class Stitcher:#拼接函数def stitch(self, images, ratio=0.75, reprojThresh=4.0,showMatches=False):#获取输入图片(imageB, imageA) = images#检测A、B图片的SIFT关键特征点,并计算特征描述子(kpsA, featuresA) = self.detectAndDescribe(imageA)(kpsB, featuresB) = self.detectAndDescribe(imageB)# 匹配两张图片的所有特征点,返回匹配结果M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)# 如果返回结果为空,没有匹配成功的特征点,退出算法if M is None:return None# 否则,提取匹配结果# H是3x3视角变换矩阵      (matches, H, status) = M# 将图片A进行视角变换,result是变换后图片result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))self.cv_show('result', result)# 将图片B传入result图片最左端result[0:imageB.shape[0], 0:imageB.shape[1]] = imageBself.cv_show('result', result)# 检测是否需要显示图片匹配if showMatches:# 生成匹配图片vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)# 返回结果return (result, vis)# 返回匹配结果return resultdef cv_show(self,name,img):cv2.imshow(name, img)cv2.waitKey(0)cv2.destroyAllWindows()def detectAndDescribe(self, image):# 将彩色图片转换成灰度图gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 建立SIFT生成器descriptor = cv2.xfeatures2d.SIFT_create()# 检测SIFT特征点,并计算描述子(kps, features) = descriptor.detectAndCompute(image, None)# 将结果转换成NumPy数组kps = np.float32([kp.pt for kp in kps])# 返回特征点集,及对应的描述特征return (kps, features)def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):# 建立暴力匹配器matcher = cv2.BFMatcher()# 使用KNN检测来自A、B图的SIFT特征匹配对,K=2rawMatches = matcher.knnMatch(featuresA, featuresB, 2)matches = []for m in rawMatches:# 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对if len(m) == 2 and m[0].distance < m[1].distance * ratio:# 存储两个点在featuresA, featuresB中的索引值matches.append((m[0].trainIdx, m[0].queryIdx))# 当筛选后的匹配对大于4时,计算视角变换矩阵if len(matches) > 4:# 获取匹配对的点坐标ptsA = np.float32([kpsA[i] for (_, i) in matches])ptsB = np.float32([kpsB[i] for (i, _) in matches])# 计算视角变换矩阵(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)# 返回结果return (matches, H, status)# 如果匹配对小于4时,返回Nonereturn Nonedef drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):# 初始化可视化图片,将A、B图左右连接到一起(hA, wA) = imageA.shape[:2](hB, wB) = imageB.shape[:2]vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")vis[0:hA, 0:wA] = imageAvis[0:hB, wA:] = imageB# 联合遍历,画出匹配对for ((trainIdx, queryIdx), s) in zip(matches, status):# 当点对匹配成功时,画到可视化图上if s == 1:# 画出匹配对ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))cv2.line(vis, ptA, ptB, (0, 255, 0), 1)# 返回可视化结果return vis

ImageStiching.py

from Stitcher import Stitcher
import cv2# 读取拼接图片
imageA = cv2.imread("left_01.png")
imageB = cv2.imread("right_01.png")# 把图片拼接成全景图
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)# 显示所有图片
cv2.imshow("Image A", imageA)
cv2.imshow("Image B", imageB)
cv2.imshow("Keypoint Matches", vis)
cv2.imshow("Result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/104703.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RunnerGo中WebSocket、Dubbo、TCP/IP三种协议接口测试详解

大家好&#xff0c;RunnerGo作为一款一站式测试平台不断为用户提供更好的使用体验&#xff0c;最近得知RunnerGo新增对&#xff0c;WebSocket、Dubbo、TCP/IP&#xff0c;三种协议API的测试支持&#xff0c;本篇文章跟大家分享一下使用方法。 WebSocket协议 WebSocket 是一种…

【Linux】权限问题

Linux权限 一、Linux 权限的概念二、Linux 权限管理1. 文件访问者的分类2. 文件类型和访问权限&#xff08;事物属性&#xff09;3. 文件访问权限的相关设置方法 三、默认权限1. 对文件和目录进行操作需要的权限2. 文件和目录的默认权限3. 粘滞位 一、Linux 权限的概念 Linux …

达梦数据库物化视图介绍

概述 本文将介绍达梦数据库物化视图&#xff0c;给出其概念及相关创建、使用示例。 1.物化视图概念 物化视图 (MATERIALIZED VIEW) 是目标表在特定时间点上的一个副本&#xff0c;占用存储空间&#xff0c;即将查询出来的数据存储在数据库中。当所依赖的一个或多个基表的数据…

bh002- Blazor hybrid / Maui 使用ORM和数据库快速教程

接上篇 bh002- Blazor hybrid / Maui 保存设置快速教程 源码 10. 添加引用 Index.razor.cs 添加引用 using FreeSql.DataAnnotations; #if WINDOWS using Windows.Storage; #endif 11. 简单使用freesql ORM 初始化数据,添加数据 public partial class Index {[DisplayNam…

[oneAPI] 基于BERT预训练模型的命名体识别任务

[oneAPI] 基于BERT预训练模型的命名体识别任务 Intel DevCloud for oneAPI 和 Intel Optimization for PyTorch基于BERT预训练模型的命名体识别任务语料介绍数据集构建使用示例 命名体识别模型前向传播模型训练 结果 参考资料 比赛&#xff1a;https://marketing.csdn.net/p/f3…

Unity - 制作package 插件包

1.将制作的插件包代码放置一个根目录下 2.在跟目录下创建package.json文件 //package.json {"name": "com.unity.customlibrary", //插件包名:com.组织名.包名"displayName": "CustomLibrary", //显示的插件名"v…

OpenCV项目开发实战--基于Python/C++实现鼠标注释图像和轨迹栏来控制图像大小

鼠标指针是图形用户界面 (GUI) 中的关键组件。没有它,您就无法真正考虑与 GUI 进行交互。那么,让我们深入了解 OpenCV 中鼠标和轨迹栏的内置函数。我们将演示如何使用鼠标来注释图像,以及如何使用轨迹栏来控制图像的大小 我们将使用下图来演示 OpenCV 中鼠标指针和轨迹栏功能…

保护函数返回的利器——Linux Shadow Call Stack

写在前面 提到内核栈溢出的漏洞缓解&#xff0c;许多朋友首先想到的是栈内金丝雀&#xff08;Stack Canary&#xff09;。今天向大家介绍一项在近年&#xff0c;于Android设备中新增&#xff0c;且默默生效的安全机制——影子调用栈&#xff1a;SCS&#xff08;Shadow Call St…

Kafka单节点部署

&#x1f388; 作者&#xff1a;互联网-小啊宇 &#x1f388; 简介&#xff1a; CSDN 运维领域创作者、阿里云专家博主。目前从事 Kubernetes运维相关工作&#xff0c;擅长Linux系统运维、开源监控软件维护、Kubernetes容器技术、CI/CD持续集成、自动化运维、开源软件部署维护…

iptables的使用规则

环境中为了安全要限制swagger的访问&#xff0c;最简单的方式是通过iptables防火墙设置规则限制。 在测试服务器中设置访问swagger-ui.html显示如下&#xff0c;区分大小写&#xff1a; iptables设置限制访问9783端口的swagger字段的请求&#xff1a; iptables -A INPUT -p t…

leetcode304. 二维区域和检索 - 矩阵不可变(java)

前缀和数组 二维区域和检索 - 矩阵不可变题目描述前缀和代码演示 一维数组前缀和 二维区域和检索 - 矩阵不可变 难度 - 中等 原题链接 - 二维区域和检索 - 矩阵不可变 题目描述 给定一个二维矩阵 matrix&#xff0c;以下类型的多个请求&#xff1a; 计算其子矩形范围内元素的总…

Java抽象类

Java中的抽象类&#xff08;Abstract Class&#xff09;是一种特殊类型的类&#xff0c;它无法被实例化&#xff0c;只能被用作其他类的基础。抽象类用于定义具有共同特征和行为的一组相关类的共同结构和方法。抽象类可以包含抽象方法&#xff08;没有具体实现的方法&#xff0…

VR防地质灾害安全教育:增强自然灾害知识,提高自我保护意识

VR防地质灾害安全教育系统是一种虚拟仿真技术&#xff0c;可以通过虚拟现实技术模拟地震、泥石流、滑坡等地质灾害的发生和应对过程&#xff0c;帮助人们提高应对突发自然灾害的能力。这种系统的优势在于可以增强自然灾害知识&#xff0c;提高自我保护意识&#xff0c;锻炼人们…

MyBatis分页插件PageHelper的使用及特殊字符的处理

目录 一、PageHelper简介 1.什么是分页 2.PageHelper是什么 3.使用PageHelper的优点 二、PageHelper插件的使用 原生limit查询 1. 导入pom依赖 2. Mybatis.cfg.xml 配置拦截器 3. 使用PageHelper进行分页 三、特殊字符的处理 1.SQL注入&#xff1a; 2.XML转义&#…

一、Kafka概述

目录 1.1 定义1.2 消息队列1、传统消息队列的应用场景2、消息队列的两种模式 1.3 Kafka的基础架构 1.1 定义 Kafka传 统定义&#xff1a;Kafka是一个分布式的基于发布/订阅模式的消息队列&#xff08;Message Queue&#xff09;&#xff0c;主要应用于大数据实时处理领域。 K…

ACL2023 Prompt 相关文章速通 Part 1

Accepted Papers link: ACL2023 main conference accepted papers 文章目录 Accepted PapersPrompter: Zero-shot Adaptive Prefixes for Dialogue State Tracking Domain AdaptationQuery Refinement Prompts for Closed-Book Long-Form QAPrompting Language Models for Lin…

【Redis】什么是缓存击穿,如何预防缓存击穿?

【Redis】什么是缓存击穿&#xff0c;如何预防缓存击穿&#xff1f; 缓存击穿是指一个 Key 非常热点&#xff0c;大并发集中对这一个点进行访问&#xff0c;当这个Key 在失效的瞬间&#xff0c;持续的大并发就会穿破缓存&#xff0c;直接请求数据库。缓存击穿和缓存雪崩的区别…

基于FPGA视频接口之HDMI2.0编/解码

简介 为什么要特别说明HDMI的版本,是因为HDMI的版本众多,代表的HDMI速度同样不同,当前版本在HDMI2.1速度达到48Gbps,可以传输4K及以上图像,但我们当前还停留在1080P@60部分,且使用的芯片和硬件结构有很大差别,故将HDMI分为两个部分说明1080@60以下分辨率和4K以上分辨率(…

【WebSocket】前端使用WebSocket实时通信

目录 前言什么是WebSocketWebSocket的工作原理WebSocket与HTTP的关系HTTP建立持久化连接WebSocket类封装 前言 最近写项目&#xff0c;需要实现消息通知和实时聊天的功能&#xff0c;就去了解了一些关于websocket的知识&#xff0c;总结如下。 什么是WebSocket WebSocket 是一…

vscode C++17便捷配置教程(懒人版)

环境链接 以上是已经配置好的c17环境链接&#xff0c;直接下载解压即可&#xff08;注意文件路径上不要带有中文&#xff09; 下载解压之后按照msys64-mingw64-bin路径打开 然后单击该路径右方空白区域可直接复制路径 然后点击开始菜单搜索“环境变量“并打开&#xff08;如…