openCV实战-系列教程5:边缘检测(Canny边缘检测/高斯滤波器/Sobel算子/非极大值抑制/线性插值法/梯度方向/双阈值检测 )、原理解析、源码解读

打印一个图片可以做出一个函数:

def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()

1、Canny边缘检测流程

Canny是一个科学家在1986年写了一篇论文,所以用自己的名字来命名这个检测算法,Canny边缘检测算法这里写了5步流程,会用到之前《openCV实战-系列教程》的内容。 

  1. 使用高斯滤波器,以平滑图像,滤除噪声。
  2. 计算图像中每个像素点的梯度强度和方向。
  3. 应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
  4. 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
  5. 通过抑制孤立的弱边缘最终完成边缘检测。

滤波:Canny检测算法使用的滤波器是高斯滤波器,通过滤波器可以对图像进行平滑处理。所以第一步需要过滤噪声,当进行检测的时候,肯定需要计算梯度,当遇到噪音点也会发生梯度的变化,所以为了更好的做到边缘检测,第一步需要去噪。

梯度:之前我们计算梯度的时候,只需要计算大小就行了,但是现在需要计算一下方向,所以梯度计算包括强度和方向。

非极大值抑制:计算的梯度大小有不同,比如在一个3*3的卷积核中,有些梯度比较小,相对大的就会保留下来,小的梯度就不会保留,只留下最明显的。 比如在人脸检测中,需要把人脸部分打出一个框的标识,计算的时候会计算出多个框,每个框都有一个概率值,最后只保留概率最大的那个框,而其他的框就会被抑制掉。

双阈值:计算边界的时候,会计算出多个候选值,在候选值中会再进行计算,只保留最接近真实的那个候选值边界。

完成边缘检测:将前面的结果都组合起来,完成边缘检测。

2、高斯滤波器

在前面的内容中已经讲解过,中间点比较大,越边缘的点越小,图中的H对高斯滤波器的滤波核进行归一化处理,然后再将滤波核H框住的区域A对应位置相乘再求和得到一个结果e。

3、梯度方向

Canny计算梯度使用的是Sobel算子(前面已经讲过这个内容), Sobel算子中需要分别计算水平和竖直两个方向的Gx和Gy(Gx和Gy的计算如上图),将这个结果融合到一起G计算方法如上图

梯度方向就是θ值,通过Gx和Gy计算得到,计算方法如上图。

4、非极大值抑制

4.1 方法A

如图所示,C点是目标像素点,需要判断C是不是一个极大值点,然后红色方框是它的周围的8个像素,蓝色线是C点的梯度方向,梯度方向和边界方向应该是垂直的关系。

如图所示,g1、g2、g3、g4、c都是一个像素点,而Q、Z是梯度方向与方框的交点,Q和Z不是一个像素是一个亚像素,使用线性插值法计算这个亚像素。 

首先g1、g2、g3、g4的梯度(梯度幅值,上一节讲到的梯度计算)都能够计算出来, Q就是g1和g2之间的,用M(dtmp1)表示Q点梯度(梯度幅值),它的计算方法在上图的公式已经给出,w和(1-w)都是代表的是一个权重,是Q点到g1、g2点的距离比上g1到g2的距离。得到权重乘上g1和g2的梯度就得到了Q点的梯度。

通过比较C、Q、Z的梯度值,如果C比Q、Z都要大,则说明C点是一个极大值,就可以将C点保留下来。

4.2 方法B

由于方法A太复杂了,将它简化成方法B,将一个像素周围的8个像素分解成8个方向。在方法1中如果过了g1和g4就不需要做插值了。方法B就是判断当前的方向和这8个方向那个最近就是哪个方向。然后这个方向上除了目标像素值之外还有两个点,如图所示假如分别是A、B、C,如果目标点A比B、C的梯度都要小那么A点就是极大值点。

5、双阈值检测 

 

maxVal即max value,意思是如果算出来的梯度值比maxVal(假如是100)大,那就是边界。

所以A点是边界,如果红色线下方还有一个D点,那么就舍弃这个点,这个点的梯度值比minVal小。

如果是在minval和maxval之间,就要分开讨论了,比如C点和边界点A连接在了一起,那么C点就可以判断为一个边界点,否则比如B点就不是了

6、边缘检测效果实现

这里的80和150就是minVal和maxVal

img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,80,150)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')

打印结果:

 所以minVal和maxVal的设定是比较重要的,第5节中如果对minval进行调整,那么提到的D点就有可能判定为边界点,因此会提取出更多的细节。

再导入一张图片,将两个参数设置的更大一些来对比:

img=cv2.imread("car.png",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,120,250)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')

打印结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/104726.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux文本三剑客

linux文本三剑客 1、grep2、sed 1、grep 过滤 参数用法作用-igrep -i STRING xxx.txt从xxx.txt文件查找不区分大小写STRING-wgrep -w STRING xxx.txt精确匹配STRING-egrep -e STRING1 -e STRING2 xxx.txt查找多个STRING行-ngrep -n STRING xxx.txt查看STRING 在第几行-vgrep …

【【Verilog典型电路设计之log函数的Verilog HDL设计】】

Verilog典型电路设计之log函数的Verilog HDL设计 log函数是一种典型的单目计算函数,与其相应的还有指数函数、三角函数等。对于单目计算函数的硬件加速器设计一般两种简单方法:一种是查找表的方式;一种是使用泰勒级数展开成多项式进行近似计算。这两种方式在设计方…

检测输电线上的鸟巢,用SSD结合HSV色彩空间滤波器相结合的检测方法--论文中图还少一张,欠点意思

Detection of Bird Nests on Power Line Patrol Using Single Shot Detector Abstract 电力塔上鸟巢的存在对输电线路的安全稳定构成了威胁。近年来,利用无人机探测输电线路上的鸟巢已成为电力巡检的重要任务之一。图像处理方法从计算机视觉向功率图像识别的迁移日…

字节跳动 Git 的正确使用姿势与最佳实践

版本控制Git 黑马&尚硅谷 Git的前世今生 方向介绍 为什么要学习Git 1.0 Git是什么 1.1 版本控制 1.1.1 本地版本控制 1.1.2 集中版本控制 1.1.3 分布式版本控制 我们已经把三个不同的版本控制系统介绍完了,Git 作为分布式版本控制工具, 虽然目前来讲…

第5步---MySQL的DQL查询语句

第5步---MySQL的DQL查询语句 DQL 数据库查询语言 1.基本的查询语句 1.完整得查询得语句 简化版的查询语句 select * from 表名 where 条件; 2.创建用于测试的表 1.创建测试数据 -- DQL -- 创建测试表 DROP TABLE IF EXISTS product; CREATE TABLE IF NOT EXISTS product( pi…

微信小程序|步骤条

步骤条是现代用户界面设计中常见的元素之一,它能够引导用户按照预定顺序完成一系列任务或步骤。在小程序中,实现步骤条可以为用户提供更好的导航和引导,使用户体验更加流畅和直观。本文将介绍如何在小程序中实现步骤条,并逐步展示实现的过程和关键技巧 目录 步骤条的作用及…

CS144 计算机网络 Lab3:TCP Sender

前言 在 Lab2 中我们实现了 TCP Receiver,负责在收到报文段之后将数据写入重组器中,并回复给发送方确认应答号。在 Lab3 中,我们将实现 TCP 连接的另一个端点——发送方,负责读取 ByteStream(由发送方上层应用程序创建…

设计模式之详解

概念 在软件工程中,设计模式是指软件设计问题的推荐方案。 设计模式一般是描述如何组织代码和使用最佳实践来解决常见的设计问题。 设计模式是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。 好处 设计模式可以提高代码的可重用性和可读…

1.RabbitMQ介绍

一、MQ是什么?为什么使用它 MQ(Message Queue,简称MQ)被称为消息队列。 是一种用于在应用程序之间传递消息的通信方式。它是一种异步通信模式,允许不同的应用程序、服务或组件之间通过将消息放入队列中来进行通信。这…

Linux Day11---mbash项目(二)

观看本文之前请先阅读Linux Day10的相关内容 1.touch 1.1 open系统调用 int open(const char*path,int oflags,mode_t mode); oflags参数: O_APPEND:把写入数据追加在文件的末尾 O_TRUNC:把文件长度设置为0,丢弃已有的内容 O_CREAT:如果需要&#…

vue+file-saver+xlsx+htmlToPdf+jspdf实现本地导出PDF和Excel

页面效果如下(echarts图表按需添加,以下代码中没有) 1、安装插件 npm install xlsx --save npm install file-saver --save npm install html2canvas --save npm install jspdf --save2、main.js引入html2canvas import htmlToPdf from …

【java】LinkedList 和 ArrayList的简介与对比

Java LinkedList和 ArrayList 在使用上,几乎是一样的。由于LinkedList是基于双向链表的,会多出list.getFirst();获取头部元素等方法 链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按…

JavaWeb学习-Day10

SpringBootWeb案例 准备工作 开发流程: 开发接口步骤: 删除部门: 新增部门: 简化代码: limit:分页展示,公式:(页数-1)*页面总数,页面总数 目前出现的问题&am…

VR全景:助力乡村振兴,实现可持续发展

引言: 随着科技的飞速发展,虚拟现实(VR)全景技术正在以惊人的速度改变着我们的生活方式和产业格局。全景技术不仅在娱乐、教育等领域取得了巨大成功,也为乡村振兴提供了全新的机遇。通过以乡村为背景的VR全景体验&…

AR室内导航技术之技术说明与效果展示

随着科技的飞速发展,我们周围的环境正在经历着一场数字化的革命。其中,AR室内导航技术以其独特的魅力,为我们打开了一扇通往全新数字化世界的大门。本文将为您详细介绍这一技术的实现原理、工具应用以及成品展示,带您领略AR室内导…

opencv-全景图像拼接

运行环境 python3.6 opencv 3.4.1.15 stitcher.py import numpy as np import cv2class Stitcher:#拼接函数def stitch(self, images, ratio0.75, reprojThresh4.0,showMatchesFalse):#获取输入图片(imageB, imageA) images#检测A、B图片的SIFT关键特征点,并计算…

RunnerGo中WebSocket、Dubbo、TCP/IP三种协议接口测试详解

大家好,RunnerGo作为一款一站式测试平台不断为用户提供更好的使用体验,最近得知RunnerGo新增对,WebSocket、Dubbo、TCP/IP,三种协议API的测试支持,本篇文章跟大家分享一下使用方法。 WebSocket协议 WebSocket 是一种…

【Linux】权限问题

Linux权限 一、Linux 权限的概念二、Linux 权限管理1. 文件访问者的分类2. 文件类型和访问权限(事物属性)3. 文件访问权限的相关设置方法 三、默认权限1. 对文件和目录进行操作需要的权限2. 文件和目录的默认权限3. 粘滞位 一、Linux 权限的概念 Linux …

达梦数据库物化视图介绍

概述 本文将介绍达梦数据库物化视图,给出其概念及相关创建、使用示例。 1.物化视图概念 物化视图 (MATERIALIZED VIEW) 是目标表在特定时间点上的一个副本,占用存储空间,即将查询出来的数据存储在数据库中。当所依赖的一个或多个基表的数据…

bh002- Blazor hybrid / Maui 使用ORM和数据库快速教程

接上篇 bh002- Blazor hybrid / Maui 保存设置快速教程 源码 10. 添加引用 Index.razor.cs 添加引用 using FreeSql.DataAnnotations; #if WINDOWS using Windows.Storage; #endif 11. 简单使用freesql ORM 初始化数据,添加数据 public partial class Index {[DisplayNam…