python进行数据分析:数据预处理

六大数据类型 见python基本功

import numpy as np  
import pandas as pd

数据预处理

缺失值处理

float_data = pd.Series([1.2, -3.5, np.nan, 0])  
float_data
0    1.2  
1   -3.5  
2    NaN  
3    0.0  
dtype: float64

查看缺失值

float_data.isna()
0    False  
1    False  
2     True  
3    False  
dtype: bool
string_data = pd.Series(["aardvark", np.nan, None, "avocado"])  
string_data  
string_data.isna()  
float_data = pd.Series([1, 2, None], dtype='float64')  
float_data  
float_data.isna()
0    False  
1    False  
2     True  
dtype: bool

删除缺失值

data = pd.Series([1, np.nan, 3.5, np.nan, 7])  
data.dropna()
0    1.0  
2    3.5  
4    7.0  
dtype: float64
data[data.notna()]
0    1.0  
2    3.5  
4    7.0  
dtype: float64
data = pd.DataFrame([[1., 6.5, 3.], [1., np.nan, np.nan],  [np.nan, np.nan, np.nan], [np.nan, 6.5, 3.]])  
print(data)  
data.dropna()
     0    1    2  
0  1.0  6.5  3.0  
1  1.0  NaN  NaN  
2  NaN  NaN  NaN  
3  NaN  6.5  3.0

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |

data.dropna(how="all")##删除行全部都是缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |
| 1 | 1.0 | NaN | NaN |
| 3 | NaN | 6.5 | 3.0 |

data[4] = np.nan  
data  
data.dropna(axis="columns", how="all")##删除列全部都是缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |
| 1 | 1.0 | NaN | NaN |
| 2 | NaN | NaN | NaN |
| 3 | NaN | 6.5 | 3.0 |

df = pd.DataFrame(np.random.standard_normal((7, 3)))  
df.iloc[:4, 1] = np.nan  
df.iloc[:2, 2] = np.nan  
print(df)  
df.dropna()#删除含缺失值的行
          0         1         2  
0  0.476985       NaN       NaN  
1 -0.577087       NaN       NaN  
2  0.523772       NaN  1.343810  
3 -0.713544       NaN -2.370232  
4 -1.860761 -0.860757  0.560145  
5 -1.265934  0.119827 -1.063512  
6  0.332883 -2.359419 -0.199543

|
| 0 | 1 | 2 |
| — | — | — | — |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df.dropna(thresh=2)# 删除至少有两个缺失值的行

|
| 0 | 1 | 2 |
| — | — | — | — |
| 2 | 0.523772 | NaN | 1.343810 |
| 3 | -0.713544 | NaN | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

缺失值填充

df.fillna(0)##缺失值填充为0

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 0.476985 | 0.000000 | 0.000000 |
| 1 | -0.577087 | 0.000000 | 0.000000 |
| 2 | 0.523772 | 0.000000 | 1.343810 |
| 3 | -0.713544 | 0.000000 | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df.fillna({1: 0.5, 2: 0})#不同列填充不同缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 0.476985 | 0.500000 | 0.000000 |
| 1 | -0.577087 | 0.500000 | 0.000000 |
| 2 | 0.523772 | 0.500000 | 1.343810 |
| 3 | -0.713544 | 0.500000 | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df = pd.DataFrame(np.random.standard_normal((6, 3)))  
df.iloc[2:, 1] = np.nan  
df.iloc[4:, 2] = np.nan  
df

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | NaN | 0.069877 |
| 3 | 0.246674 | NaN | 1.004812 |
| 4 | 1.327195 | NaN | NaN |
| 5 | 0.022185 | NaN | NaN |

df.fillna(method="ffill")#向下填充

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | 0.377984 | 0.069877 |
| 3 | 0.246674 | 0.377984 | 1.004812 |
| 4 | 1.327195 | 0.377984 | 1.004812 |
| 5 | 0.022185 | 0.377984 | 1.004812 |

df.fillna(method="ffill", limit=2)#向下填充,限制填充数量=2

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | 0.377984 | 0.069877 |
| 3 | 0.246674 | 0.377984 | 1.004812 |
| 4 | 1.327195 | NaN | 1.004812 |
| 5 | 0.022185 | NaN | 1.004812 |

data = pd.Series([1., np.nan, 3.5, np.nan, 7])  
data.fillna(data.mean())#以平均值填充
0    1.000000  
1    3.833333  
2    3.500000  
3    3.833333  
4    7.000000  
dtype: float64

重复值处理

data = pd.DataFrame({"k1": ["one", "two"] * 3 + ["two"],  "k2": [1, 1, 2, 3, 3, 4, 4]})  
data

|
| k1 | k2 |
| — | — | — |
| 0 | one | 1 |
| 1 | two | 1 |
| 2 | one | 2 |
| 3 | two | 3 |
| 4 | one | 3 |
| 5 | two | 4 |
| 6 | two | 4 |

查看是否存在重复值

data.duplicated()
0    False  
1    False  
2    False  
3    False  
4    False  
5    False  
6     True  
dtype: bool

删除重复值

data.drop_duplicates()

|
| k1 | k2 |
| — | — | — |
| 0 | one | 1 |
| 1 | two | 1 |
| 2 | one | 2 |
| 3 | two | 3 |
| 4 | one | 3 |
| 5 | two | 4 |

data["v1"] = range(7)  
data

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |
| 2 | one | 2 | 2 |
| 3 | two | 3 | 3 |
| 4 | one | 3 | 4 |
| 5 | two | 4 | 5 |
| 6 | two | 4 | 6 |

data.drop_duplicates(subset=["k1"])#只要k1列有重复值就去重,保留第一行

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |

data.drop_duplicates(["k1", "k2"], keep="last")#只要k1&k2有重复值就去重,保留最后一行

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |
| 2 | one | 2 | 2 |
| 3 | two | 3 | 3 |
| 4 | one | 3 | 4 |
| 6 | two | 4 | 6 |

函数映射

data = pd.DataFrame({"food": ["bacon", "pulled pork", "bacon",  "pastrami", "corned beef", "bacon",  "pastrami", "honey ham", "nova lox"],  "ounces": [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})  
data

|
| food | ounces |
| — | — | — |
| 0 | bacon | 4.0 |
| 1 | pulled pork | 3.0 |
| 2 | bacon | 12.0 |
| 3 | pastrami | 6.0 |
| 4 | corned beef | 7.5 |
| 5 | bacon | 8.0 |
| 6 | pastrami | 3.0 |
| 7 | honey ham | 5.0 |
| 8 | nova lox | 6.0 |

map()将字典中的key映射为value

meat_to_animal = {  "bacon": "pig",  "pulled pork": "pig",  "pastrami": "cow",  "corned beef": "cow",  "honey ham": "pig",  "nova lox": "salmon"  
}
data["animal"] = data["food"].map(meat_to_animal)  
data

|
| food | ounces | animal |
| — | — | — | — |
| 0 | bacon | 4.0 | pig |
| 1 | pulled pork | 3.0 | pig |
| 2 | bacon | 12.0 | pig |
| 3 | pastrami | 6.0 | cow |
| 4 | corned beef | 7.5 | cow |
| 5 | bacon | 8.0 | pig |
| 6 | pastrami | 3.0 | cow |
| 7 | honey ham | 5.0 | pig |
| 8 | nova lox | 6.0 | salmon |

def get_animal(x):  return meat_to_animal[x]  
data["food"].map(get_animal)
0       pig  
1       pig  
2       pig  
3       cow  
4       cow  
5       pig  
6       cow  
7       pig  
8    salmon  
Name: food, dtype: object

替换

data = pd.Series([1., -999., 2., -999., -1000., 3.])  
data
0       1.0  
1    -999.0  
2       2.0  
3    -999.0  
4   -1000.0  
5       3.0  
dtype: float64

单值替换

data.replace(-999, np.nan)#将-999替换为缺失值
0       1.0  
1       NaN  
2       2.0  
3       NaN  
4   -1000.0  
5       3.0  
dtype: float64

多值替换

data.replace([-999, -1000], np.nan)#将-999&-1000替换为缺失值
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    NaN  
5    3.0  
dtype: float64
data.replace([-999, -1000], [np.nan, 0])#将-999替换为缺失值,-1000替换为0
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    0.0  
5    3.0  
dtype: float64
data.replace({-999: np.nan, -1000: 0})#将-999替换为缺失值,-1000替换为0
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    0.0  
5    3.0  
dtype: float64
data = pd.DataFrame(np.arange(12).reshape((3, 4)),  index=["Ohio", "Colorado", "New York"],  columns=["one", "two", "three", "four"])
def transform(x):  return x[:4].upper()  data.index.map(transform)
Index(['OHIO', 'COLO', 'NEW '], dtype='object')
data.index = data.index.map(transform)  
data

|
| one | two | three | four |
| — | — | — | — | — |
| OHIO | 0 | 1 | 2 | 3 |
| COLO | 4 | 5 | 6 | 7 |
| NEW | 8 | 9 | 10 | 11 |

重命名rename

data.rename(index=str.title, columns=str.upper)

|
| ONE | TWO | THREE | FOUR |
| — | — | — | — | — |
| Ohio | 0 | 1 | 2 | 3 |
| Colo | 4 | 5 | 6 | 7 |
| New | 8 | 9 | 10 | 11 |

data.rename(index={"OHIO": "INDIANA"},  columns={"three": "peekaboo"})

|
| one | two | peekaboo | four |
| — | — | — | — | — |
| INDIANA | 0 | 1 | 2 | 3 |
| COLO | 4 | 5 | 6 | 7 |
| NEW | 8 | 9 | 10 | 11 |

数据分箱pd.cut&pd.qcut

  • • pd.cut() 将指定序列 x,按指定数量等间距的划分(根据值本身而不是这些值的频率选择均匀分布的bins),或按照指定间距划分

  • • pd.qcut() 将指定序列 x,划分为 q 个区间,使落在每个区间的记录数一致

ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
bins = [18, 25, 35, 60, 100]  
age_categories = pd.cut(ages, bins)  
age_categories
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]  
Length: 12  
Categories (4, interval[int64, right]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]
age_categories.codes  
age_categories.categories  
age_categories.categories[0]  
pd.value_counts(age_categories)
(18, 25]     5  
(25, 35]     3  
(35, 60]     3  
(60, 100]    1  
dtype: int64
pd.cut(ages, bins, right=False)
[[18, 25), [18, 25), [25, 35), [25, 35), [18, 25), ..., [25, 35), [60, 100), [35, 60), [35, 60), [25, 35)]  
Length: 12  
Categories (4, interval[int64, left]): [[18, 25) < [25, 35) < [35, 60) < [60, 100)]
group_names = ["Youth", "YoungAdult", "MiddleAged", "Senior"]  
pd.cut(ages, bins, labels=group_names)
['Youth', 'Youth', 'Youth', 'YoungAdult', 'Youth', ..., 'YoungAdult', 'Senior', 'MiddleAged', 'MiddleAged', 'YoungAdult']  
Length: 12  
Categories (4, object): ['Youth' < 'YoungAdult' < 'MiddleAged' < 'Senior']
data = np.random.uniform(size=20)  
pd.cut(data, 4, precision=2)
[(0.32, 0.53], (0.74, 0.95], (0.74, 0.95], (0.53, 0.74], (0.11, 0.32], ..., (0.74, 0.95], (0.11, 0.32], (0.74, 0.95], (0.32, 0.53], (0.74, 0.95]]  
Length: 20  
Categories (4, interval[float64, right]): [(0.11, 0.32] < (0.32, 0.53] < (0.53, 0.74] < (0.74, 0.95]]
data = np.random.standard_normal(1000)  
quartiles = pd.qcut(data, 4, precision=2)  
quartiles  
pd.value_counts(quartiles)
(-2.96, -0.69]     250  
(-0.69, -0.032]    250  
(-0.032, 0.61]     250  
(0.61, 3.93]       250  
dtype: int64
pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.]).value_counts()
(-2.9499999999999997, -1.187]    100  
(-1.187, -0.0321]                400  
(-0.0321, 1.287]                 400  
(1.287, 3.928]                   100  
dtype: int64
data = pd.DataFrame(np.random.standard_normal((1000, 4)))  
data.describe()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| count | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 |
| mean | -0.047439 | 0.046069 | 0.024366 | -0.006350 |
| std | 0.997187 | 0.998359 | 1.008925 | 0.993665 |
| min | -3.428254 | -3.645860 | -3.184377 | -3.745356 |
| 25% | -0.743886 | -0.599807 | -0.612162 | -0.697084 |
| 50% | -0.086309 | 0.043663 | -0.013609 | -0.026381 |
| 75% | 0.624413 | 0.746527 | 0.690847 | 0.694459 |
| max | 3.366626 | 2.653656 | 3.525865 | 2.735527 |

col = data[2]  
col[col.abs() > 3]
55     3.260383  
230   -3.056990  
317   -3.184377  
777    3.525865  
Name: 2, dtype: float64
data[(data.abs() > 3).any(axis="columns")]

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| 36 | -2.315555 | 0.457246 | -0.025907 | -3.399312 |
| 55 | 0.050188 | 1.951312 | 3.260383 | 0.963301 |
| 131 | 0.146326 | 0.508391 | -0.196713 | -3.745356 |
| 230 | -0.293333 | -0.242459 | -3.056990 | 1.918403 |
| 254 | -3.428254 | -0.296336 | -0.439938 | -0.867165 |
| 317 | 0.275144 | 1.179227 | -3.184377 | 1.369891 |
| 539 | -0.362528 | -3.548824 | 1.553205 | -2.186301 |
| 631 | 3.366626 | -2.372214 | 0.851010 | 1.332846 |
| 777 | -0.658090 | -0.207434 | 3.525865 | 0.283070 |
| 798 | 0.599947 | -3.645860 | 0.255475 | -0.549574 |

data[data.abs() > 3] = np.sign(data) * 3  
data.describe()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| count | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 |
| mean | -0.047378 | 0.047263 | 0.023821 | -0.005206 |
| std | 0.994634 | 0.994342 | 1.005685 | 0.989845 |
| min | -3.000000 | -3.000000 | -3.000000 | -3.000000 |
| 25% | -0.743886 | -0.599807 | -0.612162 | -0.697084 |
| 50% | -0.086309 | 0.043663 | -0.013609 | -0.026381 |
| 75% | 0.624413 | 0.746527 | 0.690847 | 0.694459 |
| max | 3.000000 | 2.653656 | 3.000000 | 2.735527 |

np.sign(data).head()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| 0 | -1.0 | 1.0 | -1.0 | 1.0 |
| 1 | -1.0 | 1.0 | -1.0 | 1.0 |
| 2 | -1.0 | -1.0 | -1.0 | -1.0 |
| 3 | -1.0 | 1.0 | 1.0 | -1.0 |
| 4 | 1.0 | 1.0 | 1.0 | -1.0 |

随机重排列

df = pd.DataFrame(np.arange(5 * 7).reshape((5, 7)))  
df  
sampler = np.random.permutation(5)#permutation:产生0到n-1的所有整数的随机排列  
sampler
array([2, 4, 3, 0, 1])
df.take(sampler)#行随机排列

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 3 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

df.iloc[sampler]

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 3 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

column_sampler = np.random.permutation(7)  
column_sampler  
df.take(column_sampler, axis="columns")#列随机排列

|
| 6 | 2 | 1 | 3 | 4 | 0 | 5 |
| — | — | — | — | — | — | — | — |
| 0 | 6 | 2 | 1 | 3 | 4 | 0 | 5 |
| 1 | 13 | 9 | 8 | 10 | 11 | 7 | 12 |
| 2 | 20 | 16 | 15 | 17 | 18 | 14 | 19 |
| 3 | 27 | 23 | 22 | 24 | 25 | 21 | 26 |
| 4 | 34 | 30 | 29 | 31 | 32 | 28 | 33 |

随机采样

df.sample(n=3)# n指定采样的个数

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

choices = pd.Series([5, 7, -1, 6, 4])  
choices.sample(n=10, replace=True)
0    5  
1    7  
0    5  
0    5  
2   -1  
4    4  
2   -1  
2   -1  
0    5  
4    4  
dtype: int64

哑变量编码

df = pd.DataFrame({"key": ["b", "b", "a", "c", "a", "b"],  "data1": range(6)})  
df

|
| key | data1 |
| — | — | — |
| 0 | b | 0 |
| 1 | b | 1 |
| 2 | a | 2 |
| 3 | c | 3 |
| 4 | a | 4 |
| 5 | b | 5 |

pd.get_dummies(df["key"])

|
| a | b | c |
| — | — | — | — |
| 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 2 | 1 | 0 | 0 |
| 3 | 0 | 0 | 1 |
| 4 | 1 | 0 | 0 |
| 5 | 0 | 1 | 0 |

dummies = pd.get_dummies(df["key"], prefix="key")##前缀为key  
df_with_dummy = df[["data1"]].join(dummies)#合并数据集  
df_with_dummy

|
| data1 | key_a | key_b | key_c |
| — | — | — | — | — |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 2 | 2 | 1 | 0 | 0 |
| 3 | 3 | 0 | 0 | 1 |
| 4 | 4 | 1 | 0 | 0 |
| 5 | 5 | 0 | 1 | 0 |

mnames = ["movie_id", "title", "genres"]  
movies = pd.read_table("datasets/movielens/movies.dat", sep="::",  header=None, names=mnames, engine="python")  
movies[:10]

|
| movie_id | title | genres |
| — | — | — | — |
| 0 | 1 | Toy Story (1995) | Animation|Children’s|Comedy |
| 1 | 2 | Jumanji (1995) | Adventure|Children’s|Fantasy |
| 2 | 3 | Grumpier Old Men (1995) | Comedy|Romance |
| 3 | 4 | Waiting to Exhale (1995) | Comedy|Drama |
| 4 | 5 | Father of the Bride Part II (1995) | Comedy |
| 5 | 6 | Heat (1995) | Action|Crime|Thriller |
| 6 | 7 | Sabrina (1995) | Comedy|Romance |
| 7 | 8 | Tom and Huck (1995) | Adventure|Children’s |
| 8 | 9 | Sudden Death (1995) | Action |
| 9 | 10 | GoldenEye (1995) | Action|Adventure|Thriller |

dummies = movies["genres"].str.get_dummies("|")##将一列中以|分割的字段变成哑变量  
dummies.iloc[:10, :6]

|
| Action | Adventure | Animation | Children’s | Comedy | Crime |
| — | — | — | — | — | — | — |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 0 | 1 | 0 |
| 4 | 0 | 0 | 0 | 0 | 1 | 0 |
| 5 | 1 | 0 | 0 | 0 | 0 | 1 |
| 6 | 0 | 0 | 0 | 0 | 1 | 0 |
| 7 | 0 | 1 | 0 | 1 | 0 | 0 |
| 8 | 1 | 0 | 0 | 0 | 0 | 0 |
| 9 | 1 | 1 | 0 | 0 | 0 | 0 |

movies_windic = movies.join(dummies.add_prefix("Genre_"))  
movies_windic.iloc[0]
movie_id                                       1  
title                           Toy Story (1995)  
genres               Animation|Children's|Comedy  
Genre_Action                                   0  
Genre_Adventure                                0  
Genre_Animation                                1  
Genre_Children's                               1  
Genre_Comedy                                   1  
Genre_Crime                                    0  
Genre_Documentary                              0  
Genre_Drama                                    0  
Genre_Fantasy                                  0  
Genre_Film-Noir                                0  
Genre_Horror                                   0  
Genre_Musical                                  0  
Genre_Mystery                                  0  
Genre_Romance                                  0  
Genre_Sci-Fi                                   0  
Genre_Thriller                                 0  
Genre_War                                      0  
Genre_Western                                  0  
Name: 0, dtype: object
np.random.seed(12345) # to make the example repeatable  
values = np.random.uniform(size=10)  
values  
bins = [0, 0.2, 0.4, 0.6, 0.8, 1]  
pd.get_dummies(pd.cut(values, bins))

|
| (0.0, 0.2] | (0.2, 0.4] | (0.4, 0.6] | (0.6, 0.8] | (0.8, 1.0] |
| — | — | — | — | — | — |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 2 | 1 | 0 | 0 | 0 | 0 |
| 3 | 0 | 1 | 0 | 0 | 0 |
| 4 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 1 |
| 7 | 0 | 0 | 0 | 1 | 0 |
| 8 | 0 | 0 | 0 | 1 | 0 |
| 9 | 0 | 0 | 0 | 1 | 0 |

正则表达式

s = pd.Series([1, 2, 3, None])  
s  
s.dtype
dtype('float64')
s = pd.Series([1, 2, 3, None], dtype=pd.Int64Dtype())  
s  
s.isna()  
s.dtype
Int64Dtype()
s[3]  
s[3] is pd.NA
True
s = pd.Series([1, 2, 3, None], dtype="Int64")
s = pd.Series(['one', 'two', None, 'three'], dtype=pd.StringDtype())  
s
0      one  
1      two  
2     <NA>  
3    three  
dtype: string
df = pd.DataFrame({"A": [1, 2, None, 4],  "B": ["one", "two", "three", None],  "C": [False, None, False, True]})  
df  
df["A"] = df["A"].astype("Int64")  
df["B"] = df["B"].astype("string")  
df["C"] = df["C"].astype("boolean")  
df

|
| A | B | C |
| — | — | — | — |
| 0 | 1 | one | False |
| 1 | 2 | two | |
| 2 | | three | False |
| 3 | 4 | | True |

val = "a,b,  guido"  
val.split(",")
['a', 'b', '  guido']
pieces = [x.strip() for x in val.split(",")]  
pieces
['a', 'b', 'guido']
first, second, third = pieces  
first + "::" + second + "::" + third
'a::b::guido'
"::".join(pieces)
'a::b::guido'
"guido" in val  
val.index(",")  
val.find(":")
-1
val.index(":")
---------------------------------------------------------------------------  ValueError                                Traceback (most recent call last)  ~\AppData\Local\Temp\ipykernel_20552\2601145560.py in <module>  
----> 1 val.index(":")  ValueError: substring not found
val.count(",")
2
val.replace(",", "::")  
val.replace(",", "")
'ab  guido'
import re  
text = "foo    bar\t baz  \tqux"  
re.split(r"\s+", text)
['foo', 'bar', 'baz', 'qux']
regex = re.compile(r"\s+")  
regex.split(text)
['foo', 'bar', 'baz', 'qux']
regex.findall(text)
['    ', '\t ', '  \t']
text = """Dave dave@google.com  
Steve steve@gmail.com  
Rob rob@gmail.com  
Ryan ryan@yahoo.com"""  
pattern = r"[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}"  regex = re.compile(pattern, flags=re.IGNORECASE)
regex.findall(text)
['dave@google.com', 'steve@gmail.com', 'rob@gmail.com', 'ryan@yahoo.com']
m = regex.search(text)  
m  
text[m.start():m.end()]
'dave@google.com'
print(regex.match(text))
None
print(regex.sub("REDACTED", text))
Dave REDACTED  
Steve REDACTED  
Rob REDACTED  
Ryan REDACTED
pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"  
regex = re.compile(pattern, flags=re.IGNORECASE)
m = regex.match("wesm@bright.net")  
m.groups()
('wesm', 'bright', 'net')
regex.findall(text)
[('dave', 'google', 'com'),  ('steve', 'gmail', 'com'),  ('rob', 'gmail', 'com'),  ('ryan', 'yahoo', 'com')]
print(regex.sub(r"Username: \1, Domain: \2, Suffix: \3", text))
Dave Username: dave, Domain: google, Suffix: com  
Steve Username: steve, Domain: gmail, Suffix: com  
Rob Username: rob, Domain: gmail, Suffix: com  
Ryan Username: ryan, Domain: yahoo, Suffix: com
data = {"Dave": "dave@google.com", "Steve": "steve@gmail.com",  "Rob": "rob@gmail.com", "Wes": np.nan}  
data = pd.Series(data)  
data  
data.isna()
Dave     False  
Steve    False  
Rob      False  
Wes       True  
dtype: bool
data.str.contains("gmail")
Dave     False  
Steve     True  
Rob       True  
Wes        NaN  
dtype: object
data_as_string_ext = data.astype('string')  
data_as_string_ext  
data_as_string_ext.str.contains("gmail")
Dave     False  
Steve     True  
Rob       True  
Wes       <NA>  
dtype: boolean
pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"  
data.str.findall(pattern, flags=re.IGNORECASE)
Dave     [(dave, google, com)]  
Steve    [(steve, gmail, com)]  
Rob        [(rob, gmail, com)]  
Wes                        NaN  
dtype: object
matches = data.str.findall(pattern, flags=re.IGNORECASE).str[0]  
matches  
matches.str.get(1)
Dave     google  
Steve     gmail  
Rob       gmail  
Wes         NaN  
dtype: object
data.str[:5]
Dave     dave@  
Steve    steve  
Rob      rob@g  
Wes        NaN  
dtype: object
data.str.extract(pattern, flags=re.IGNORECASE)

|
| 0 | 1 | 2 |
| — | — | — | — |
| Dave | dave | google | com |
| Steve | steve | gmail | com |
| Rob | rob | gmail | com |
| Wes | NaN | NaN | NaN |

values = pd.Series(['apple', 'orange', 'apple',  'apple'] * 2)  
values  
pd.unique(values)  
pd.value_counts(values)
apple     6  
orange    2  
dtype: int64
values = pd.Series([0, 1, 0, 0] * 2)  
dim = pd.Series(['apple', 'orange'])  
values  
dim
0     apple  
1    orange  
dtype: object
dim.take(values)
0     apple  
1    orange  
0     apple  
0     apple  
0     apple  
1    orange  
0     apple  
0     apple  
dtype: object
fruits = ['apple', 'orange', 'apple', 'apple'] * 2  
N = len(fruits)  
rng = np.random.default_rng(seed=12345)  
df = pd.DataFrame({'fruit': fruits,  'basket_id': np.arange(N),  'count': rng.integers(3, 15, size=N),  'weight': rng.uniform(0, 4, size=N)},  columns=['basket_id', 'fruit', 'count', 'weight'])  
df

|
| basket_id | fruit | count | weight |
| — | — | — | — | — |
| 0 | 0 | apple | 11 | 1.564438 |
| 1 | 1 | orange | 5 | 1.331256 |
| 2 | 2 | apple | 12 | 2.393235 |
| 3 | 3 | apple | 6 | 0.746937 |
| 4 | 4 | apple | 5 | 2.691024 |
| 5 | 5 | orange | 12 | 3.767211 |
| 6 | 6 | apple | 10 | 0.992983 |
| 7 | 7 | apple | 11 | 3.795525 |

fruit_cat = df['fruit'].astype('category')  
fruit_cat
0     apple  
1    orange  
2     apple  
3     apple  
4     apple  
5    orange  
6     apple  
7     apple  
Name: fruit, dtype: category  
Categories (2, object): ['apple', 'orange']
c = fruit_cat.array  
type(c)
pandas.core.arrays.categorical.Categorical
c.categories  
c.codes
array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int8)
dict(enumerate(c.categories))
{0: 'apple', 1: 'orange'}
df['fruit'] = df['fruit'].astype('category')  
df["fruit"]
0     apple  
1    orange  
2     apple  
3     apple  
4     apple  
5    orange  
6     apple  
7     apple  
Name: fruit, dtype: category  
Categories (2, object): ['apple', 'orange']
my_categories = pd.Categorical(['foo', 'bar', 'baz', 'foo', 'bar'])  
my_categories
['foo', 'bar', 'baz', 'foo', 'bar']  
Categories (3, object): ['bar', 'baz', 'foo']
categories = ['foo', 'bar', 'baz']  
codes = [0, 1, 2, 0, 0, 1]  
my_cats_2 = pd.Categorical.from_codes(codes, categories)  
my_cats_2
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo', 'bar', 'baz']
ordered_cat = pd.Categorical.from_codes(codes, categories,  ordered=True)  
ordered_cat
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo' < 'bar' < 'baz']
my_cats_2.as_ordered()
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo' < 'bar' < 'baz']
rng = np.random.default_rng(seed=12345)  
draws = rng.standard_normal(1000)  
draws[:5]
array([-1.4238,  1.2637, -0.8707, -0.2592, -0.0753])
bins = pd.qcut(draws, 4)  
bins
[(-3.121, -0.675], (0.687, 3.211], (-3.121, -0.675], (-0.675, 0.0134], (-0.675, 0.0134], ..., (0.0134, 0.687], (0.0134, 0.687], (-0.675, 0.0134], (0.0134, 0.687], (-0.675, 0.0134]]  
Length: 1000  
Categories (4, interval[float64, right]): [(-3.121, -0.675] < (-0.675, 0.0134] < (0.0134, 0.687] < (0.687, 3.211]]
bins = pd.qcut(draws, 4, labels=['Q1', 'Q2', 'Q3', 'Q4'])  
bins  
bins.codes[:10]
array([0, 3, 0, 1, 1, 0, 0, 2, 2, 0], dtype=int8)
bins = pd.Series(bins, name='quartile')  
results = (pd.Series(draws)  .groupby(bins)  .agg(['count', 'min', 'max'])  .reset_index())  
results

|
| quartile | count | min | max |
| — | — | — | — | — |
| 0 | Q1 | 250 | -3.119609 | -0.678494 |
| 1 | Q2 | 250 | -0.673305 | 0.008009 |
| 2 | Q3 | 250 | 0.018753 | 0.686183 |
| 3 | Q4 | 250 | 0.688282 | 3.211418 |

results['quartile']
0    Q1  
1    Q2  
2    Q3  
3    Q4  
Name: quartile, dtype: category  
Categories (4, object): ['Q1' < 'Q2' < 'Q3' < 'Q4']
N = 10_000_000  
labels = pd.Series(['foo', 'bar', 'baz', 'qux'] * (N // 4))
categories = labels.astype('category')
labels.memory_usage(deep=True)  
categories.memory_usage(deep=True)
10000540
%time _ = labels.astype('category')
Wall time: 560 ms
%timeit labels.value_counts()  
%timeit categories.value_counts()
366 ms ± 9.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)  
67.6 ms ± 2.89 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
s = pd.Series(['a', 'b', 'c', 'd'] * 2)  
cat_s = s.astype('category')  
cat_s
0    a  
1    b  
2    c  
3    d  
4    a  
5    b  
6    c  
7    d  
dtype: category  
Categories (4, object): ['a', 'b', 'c', 'd']
cat_s.cat.codes  
cat_s.cat.categories
Index(['a', 'b', 'c', 'd'], dtype='object')
actual_categories = ['a', 'b', 'c', 'd', 'e']  
cat_s2 = cat_s.cat.set_categories(actual_categories)  
cat_s2
0    a  
1    b  
2    c  
3    d  
4    a  
5    b  
6    c  
7    d  
dtype: category  
Categories (5, object): ['a', 'b', 'c', 'd', 'e']
cat_s.value_counts()  
cat_s2.value_counts()
a    2  
b    2  
c    2  
d    2  
e    0  
dtype: int64
cat_s3 = cat_s[cat_s.isin(['a', 'b'])]  
cat_s3  
cat_s3.cat.remove_unused_categories()
0    a  
1    b  
4    a  
5    b  
dtype: category  
Categories (2, object): ['a', 'b']
cat_s = pd.Series(['a', 'b', 'c', 'd'] * 2, dtype='category')
pd.get_dummies(cat_s)

|
| a | b | c | d |
| — | — | — | — | — |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 1 |
| 4 | 1 | 0 | 0 | 0 |
| 5 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 1 | 0 |
| 7 | 0 | 0 | 0 | 1

|

---------------------------END---------------------------

题外话

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/106028.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode刷题(字符串相加、包含每个查询的最小区间、模拟行走机器人、环形子数组的最大和、满足不等式的最大值、四数之和、树中距离之和)

目录 1、字符串相加 2、包含每个查询的最小区间 3、模拟行走机器人 4、环形子数组的最大和 5、满足不等式的最大值 6、四数之和 7、 树中距离之和 1、字符串相加 class Solution:def addStrings(self, num1: str, num2: str) -> str:i len(num1) - 1 # num1的末…

Vue2向Vue3过度核心技术路由

目录 1 路由介绍1.思考2.路由的介绍3.总结 2 路由的基本使用1.目标2.作用3.说明4.官网5.VueRouter的使用&#xff08;52&#xff09;6.代码示例7.两个核心步骤8.总结 3 组件的存放目录问题1.组件分类2.存放目录3.总结 4 路由的封装抽离5 Vue路由-重定向1.问题2.解决方案3.语法4…

初阶c语言:趣味扫雷游戏

目录 前言 制作菜单 构建游戏选择框架 实现游戏功能 模块化编程&#xff1a;查看前节三子棋的内容 初始化雷区 ​编辑 优化棋盘 随机埋入地雷 点击后的决策 实现此功能代码 game&#xff08;&#xff09;&#xff1b;的安排 前言 《扫雷》是一款大众类的益智小游戏&…

【校招VIP】java语言考点之双亲委派模型

考点介绍&#xff1a; 双亲委派是校招面试中的高频考点之一。 双亲委派机制定义:当一个类加载器收到了类加载的请求的时候&#xff0c;他不会直接去加载指定的类&#xff0c;而是把这个请求委托给自己的父加载器去加载。只有父加载器无法加载这个类的时候&#xff0c;才会由当前…

MyBatis的核心技术掌握,简单易懂(上)

目录 一.MyBatis中的动态SQL 二.MyBatis中的模糊查询 1. # 符号 2. $ 符号 ---问题 ---所以大家知道 # 和 $ 在MyBatis中的模糊查询中的区别了嘛&#xff1f;&#xff1f; 三.MyBatis 中的结果映射 1. resultType&#xff1a; 2. resultMap&#xff1a; ---问题 ---…

网络:RIP协议

1. RIP协议原理介绍 RIP是一种比较简单的内部网关协议&#xff08;IGP协议&#xff09;&#xff0c;RIP基于距离矢量的贝尔曼-福特算法(Bellman - Ford)来计算到达目的网络的最佳路径。最初的RIP协议开发时间较早&#xff0c;所以在带宽、配置和管理方面的要求也较低。 路由器运…

【附安装包】Fireworks 8安装教程

软件下载 软件&#xff1a;Fireworks版本&#xff1a;8语言&#xff1a;简体中文大小&#xff1a;88.3M安装环境&#xff1a;Win11/Win10/Win8/Win7硬件要求&#xff1a;CPU2.0GHz 内存4G(或更高&#xff09;下载通道①百度网盘丨下载链接&#xff1a;https://pan.baidu.com/s…

wps 画项目进度甘特图

效果如上 步骤一&#xff1a; 创建excel 表格 步骤二&#xff1a; 选中开始时间和结束时间两列数据&#xff0c;右键设置单元格格式 步骤三&#xff1a; 选择数值&#xff0c;点击确定&#xff0c;将日期转成数值。 步骤四&#xff1a;插入图表 选中任务&#xff0c;开始时间…

科研 | Zotero导入无PDF的参考文献、书籍

最近在用Zotero在Word中插入参考文献的时候发现&#xff0c;有些没在网上找到对应的PDF版本&#xff0c;但也不是必须要PDF版本的参考文献或者参考书籍&#xff0c;如何才能不影响正常的文献排版 主要是先在网上找到对应文献&#xff0c;书籍&#xff0c;网页等的ISBN&#xf…

计算机竞赛 基于卷积神经网络的乳腺癌分类 深度学习 医学图像

文章目录 1 前言2 前言3 数据集3.1 良性样本3.2 病变样本 4 开发环境5 代码实现5.1 实现流程5.2 部分代码实现5.2.1 导入库5.2.2 图像加载5.2.3 标记5.2.4 分组5.2.5 构建模型训练 6 分析指标6.1 精度&#xff0c;召回率和F1度量6.2 混淆矩阵 7 结果和结论8 最后 1 前言 &…

W5100S-EVB-PICO进行UDP组播数据回环测试(九)

前言 上一章我们用我们的开发板作为UDP客户端连接服务器进行数据回环测试&#xff0c;那么本章我们进行UDP组播数据回环测试。 什么是UDP组播&#xff1f; 组播是主机间一对多的通讯模式&#xff0c; 组播是一种允许一个或多个组播源发送同一报文到多个接收者的技术。组播源将…

嵌入式实时操作系统的设计与开发

时钟管理 在RTOS中&#xff0c;时钟具有非常重要的作用&#xff0c;通过时钟可实现延时任务、周期性触发任务执行、任务有限等待的计时。 大多数嵌入式系统有两种时钟源&#xff0c;分别为实时时钟RTC&#xff08;Real-Time Clock&#xff09;和定时器/计数器。 实时时钟一般…

C语言 数字在升序数组中出现的次数

目录 1.题目描述 2.题目分析 2.1遍历数组方法 2.2二分查找方法 2.3代码示例 数字在升序数组中出现的次数 这道题可以用遍历数组和二分查找来处理 1.题目描述 2.题目分析 题目中有一个关键信息&#xff0c;非降序数组&#xff0c;我们可以使用if语句来处理这个问题 if(…

[JavaWeb]【十四】web后端开发-MAVEN高级

目录 一、分模块设计与开发 1.1 分模块设计 1.2 分模块设计-实践​编辑 1.2.1 复制老项目改为spring-boot-management 1.2.2 新建maven模块runa-pojo 1.2.2.1 将原项目pojo复制到runa-pojo模块 1.2.2.2 runa-pojo引入新依赖 1.2.2.3 删除原项目pojo包 1.2.2.4 在spring-…

Pytorch建立MyDataLoader过程详解

简介 torch.utils.data.DataLoader(dataset, batch_size1, shuffleNone, samplerNone, batch_samplerNone, num_workers0, collate_fnNone, pin_memoryFalse, drop_lastFalse, timeout0, worker_init_fnNone, multiprocessing_contextNone, generatorNone, *, prefetch_factorN…

简述docker的网络模式

Docker 提供了多种网络模式&#xff0c;用于控制容器之间以及容器与主机之间的网络通信。以下是 Docker 的一些常见网络模式 briage模式&#xff1a; docker容器启动时默认就是该模式,在该模式下&#xff0c;docker容器会连接到一个名为docker0的虚拟以太网桥上&#xff0c;通…

1.6 服务器处理客户端请求

客户端进程向服务器进程发送一段文本&#xff08;MySQL语句&#xff09;&#xff0c;服务器进程处理后再向客户端进程发送一段文本&#xff08;处理结果&#xff09;。 从图中我们可以看出&#xff0c;服务器程序处理来自客户端的查询请求大致需要经过三个部分&#xff0c;分别…

类与对象(下)

类与对象&#xff08;下&#xff09; 一、初始化列表1、构造函数与初始化2、使用初始化列表的形式3、注意点4、代码5、类需初始化列表但没使用初始化列表时报的错误6、成员变量的初始化顺序&#xff08;1&#xff09;顺序&#xff08;2&#xff09;测试代码&#xff08;3&#…

【中危】Apache XML Graphics Batik<1.17 存在SSRF漏洞 (CVE-2022-44729)

zhi.oscs1024.com​​​​​ 漏洞类型SSRF发现时间2023-08-23漏洞等级中危MPS编号MPS-2022-63578CVE编号CVE-2022-44729漏洞影响广度极小 漏洞危害 OSCS 描述Apache XML Graphics Batik 是一个开源的、用于处理可缩放矢量图形(SVG)格式图像的工具库。 受影响版本中&#xff0…

开源网安受邀参加软件供应链安全沙龙,推动企业提升安全治理能力

​8月23日下午&#xff0c;合肥软件行业软件供应链安全沙龙在中安创谷科技园举办。此次沙龙由合肥软件产业公共服务中心联合中安创谷科技园公司共同主办&#xff0c;开源网安软件供应链安全专家王晓龙、尹杰受邀参会并带来软件供应链安全方面的精彩内容分享&#xff0c;共同探讨…