DeepSeek-R1 论文解读 —— 强化学习大语言模型新时代来临?

近年来,人工智能(AI)领域发展迅猛,大语言模型(LLMs)为通用人工智能(AGI)的发展开辟了道路。OpenAI 的 o1 模型表现非凡,它引入的创新性推理时缩放技术显著提升了推理能力,不过该模型是闭源的。

DeepSeek-R1 paper title
今天,我们深入探讨由 DeepSeek 发布的突破性研究论文,该论文介绍了 DeepSeek-R1。这篇题为《DeepSeek-R1:通过强化学习激发大语言模型的推理能力》的论文,展示了一种前沿的开源推理模型,以及使用大规模强化学习技术训练此类模型的详细方法。

回顾:大语言模型训练过程

在这里插入图片描述

在深入探讨这篇论文之前,让我们简要回顾一下大语言模型的训练过程。通常,大语言模型要经过三个主要训练阶段:

  • 预训练:在这个阶段,大语言模型在大量文本和代码上进行预训练,以学习通用知识。这一步有助于模型熟练预测序列中的下一个标记。例如,给定 “write a bedtime _” 这样的输入,模型可以用 “story” 等合理的词补全。然而,预训练后,模型在遵循人类指令方面仍存在困难,下一阶段将解决这个问题。
  • 监督微调:在这个阶段,模型在指令数据集上进行微调。数据集中的每个样本都有一个指令 - 响应配对组成,其中响应作为标签。经过这个阶段,模型在遵循指令方面会表现得更好。
  • 强化学习:大语言模型利用反馈进一步优化。一种有效的方法是人类反馈强化学习(RLHF),即根据人类反馈训练模型。但收集大规模、高质量的人类反馈,尤其是针对复杂任务,颇具挑战。因此,另一种常用方法是人工智能反馈强化学习(RLAIF),由人工智能模型提供反馈。要使 RLAIF 有效工作,需要一个能力强大的模型来提供准确反馈。

引入 DeepSeek-R1-Zero 模型

Training DeepSeek-R1-Zero using only RL in post-training, without SFT

本文所探讨的研究省略或部分省略了监督微调阶段。具体来说,为了训练论文中提出的首个模型 DeepSeek-R1-Zero,我们从一个名为 DeepSeek-V3-Base 的预训练模型开始,它有 6710 亿个参数。监督微调阶段被完全省略。为了大规模进行强化学习,研究采用了一种基于规则的强化学习方法,而非标准的依靠人类或人工智能反馈的强化学习方式。

基于规则的强化学习

在这里插入图片描述

所使用的强化学习方法称为组相对策略优化(GRPO),由 DeepSeek 内部开发。

给定一个待训练的模型和一个输入问题,将输入送入模型,会采样得到一组输出。每个输出都包含推理过程和答案。GRPO 方法观察这些采样输出,并通过使用预定义规则为每个输出计算奖励,来训练模型生成更优的选项:

  • 准确性:一组规则用于计算准确性奖励。例如,对于有确定答案的数学问题,我们可以确切检查模型给出的最终答案是否正确。对于有预定义测试用例的代码问题,编译器会根据测试用例生成反馈。
  • 格式:另一类规则用于创建格式奖励。在论文中的下图里,我们可以看到模型被要求如何响应,其推理过程在标签内,答案在标签内。格式奖励确保模型遵循这种格式。

在这里插入图片描述

这种基于规则的机制不使用神经模型生成奖励,简化并降低了训练过程的成本,使其大规模应用成为可能。此外,研究人员发现奖励模型可能会受到奖励作弊问题的影响,即模型找到一种漏洞或意外方式来最大化奖励,但这与预期目标并不相符。

DeepSeek-R1-Zero 性能洞察

现在,让我们来探究一下 DeepSeek-R1-Zero 模型的一些性能表现。
在这里插入图片描述
在论文中的上表里,我们看到了 DeepSeek-R1-Zero 与 OpenAI 的 o1 在推理相关基准测试中的比较。令人印象深刻的是,DeepSeek-R1-Zero 与 o1 相当,在某些情况下甚至超越了它。论文中下面这张有趣的图展示了在 AIME 数据集上训练期间的改进过程。值得注意的是,AIME 上的平均一次通过率大幅提升,从最初的 15.6% 跃升至令人惊叹的 71.0%,达到了与 OpenAI 的 o1 相当的水平!
在这里插入图片描述

DeepSeek-R1-Zero 的自我进化过程

在这里插入图片描述
论文的一个关键发现是模型的自我进化过程,如上图所示。x 轴表示训练步数,y 轴表明随着训练的进行,模型的响应长度增加。通过强化学习,模型在解决推理任务时自然学会分配更多思考时间。令人惊奇的是,这一过程无需任何外部调整。

“顿悟时刻” 现象—— Aha Moment

如果上述内容还不够令人称奇,论文中还提到了 DeepSeek-R1-Zero 的另一个有趣现象 ——“顿悟时刻”。论文中的以下示例展示了这一现象。给定一道数学题,模型开始推理过程。然而,在某个时刻,模型开始重新评估其解决方案。模型学会重新评估其初始方法,并在必要时进行自我纠正。这种非凡的能力在强化学习训练过程中自然显现。
在这里插入图片描述

DeepSeek-R1 模型的训练过程

现在,我们来讨论第二个模型 DeepSeek-R1 的训练过程。但首先,既然我们刚刚看到了 DeepSeek-R1-Zero 卓越的能力,为什么还需要第二个模型呢?

为什么需要 DeepSeek-R1?

主要有两个原因:
在这里插入图片描述

  • 可读性问题:DeepSeek-R1-Zero 的输出往往可读性较差。
  • 语言一致性问题:它经常在单个回答中混合多种语言。

上述问题使得 DeepSeek-R1-Zero 的用户体验欠佳。有趣的是,一项消融研究表明,引导模型使用单一语言会略微损害其性能。与通常使用单一语言的人类不同,该模型通过使用多种语言能更好地表达自己,这一点令人着迷。

DeepSeek-R1 的训练流程

为了解决这些问题,DeepSeek-R1 采用四阶段流程进行训练:

  • 冷启动(阶段 1):从预训练模型 DeepSeek-V3-Base 开始,模型在从 DeepSeek-R1-Zero 收集的少量结果数据集上进行监督微调。这些结果经过验证,质量高且可读性强。这个数据集包含数千个样本,规模相对较小。在这个小规模高质量数据集上进行监督微调,有助于 DeepSeek-R1 缓解初始模型中存在的可读性问题。
  • 推理强化学习(阶段 2):这个阶段应用与前一个模型相同的大规模强化学习方法,以提升模型的推理能力。具体来说,在编程、数学、科学和逻辑推理等任务中,这些任务有明确的解决方案,可为强化学习过程定义奖励规则。
  • 拒绝采样和监督微调(阶段 3):在这个阶段,使用阶段 2 的模型检查点生成大量样本。通过拒绝采样,只保留正确且可读的样本。此外,使用生成式奖励模型 DeepSeek-V3 来决定保留哪些样本。这个阶段还包含了部分 DeepSeek-V3 的训练数据。然后,模型在这个数据集上进行监督微调。这个数据集不仅包含推理相关的问题,还提升了模型在更多领域的能力。
  • 多样化强化学习阶段(阶段 4):这是最后一个阶段,包含多样化的任务。对于像数学这样适用的任务,使用基于规则的奖励。对于其他任务,由大语言模型提供反馈,使模型符合人类偏好。

此外,利用阶段 3 构建的数据集对各种较小的开源模型进行了提炼,提供了具有高推理能力的较小规模替代模型。

DeepSeek-R1 的显著成果

在这里插入图片描述

在本文结尾,我们着重介绍一下免费可用的 DeepSeek-R1 与 OpenAI 的 o1 模型相比取得的显著成果。论文中的上图显示,DeepSeek-R1 不仅与 o1 相当,在某些基准测试中还超越了它。

此外,经过提炼的 320 亿参数模型也展现出了令人瞩目的性能,使其成为具有高推理能力的可行较小规模替代模型。

参考文献和链接

  • 论文页面: [2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
  • GitHub 页面:GitHub - deepseek-ai/DeepSeek-R1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10607.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户注册

🧸安清h:个人主页 🎥个人专栏:【计算机网络】【Mybatis篇】 🚦作者简介:一个有趣爱睡觉的intp,期待和更多人分享自己所学知识的真诚大学生。 目录 🎯项目基本介绍 🚦项…

蓝桥杯思维训练营(一)

文章目录 题目总览题目详解翻之一起做很甜的梦 蓝桥杯的前几题用到的算法较少,大部分考察的都是思维能力,方法比较巧妙,所以我们要积累对应的题目,多训练 题目总览 翻之 一起做很甜的梦 题目详解 翻之 思维分析:一开…

【AI】DeepSeek 概念/影响/使用/部署

在大年三十那天,不知道你是否留意到,“deepseek”这个词出现在了各大热搜榜单上。这引起了我的关注,出于学习的兴趣,我深入研究了一番,才有了这篇文章的诞生。 概念 那么,什么是DeepSeek?首先百…

minimind - 从零开始训练小型语言模型

大语言模型(LLM)领域,如 GPT、LLaMA、GLM 等,虽然它们效果惊艳, 但动辄10 Bilion庞大的模型参数个人设备显存远不够训练,甚至推理困难。 几乎所有人都不会只满足于用Lora等方案fine-tuing大模型学会一些新的…

【机器学习】自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

一、使用pytorch框架实现逻辑回归 1. 数据部分: 首先自定义了一个简单的数据集,特征 X 是 100 个随机样本,每个样本一个特征,目标值 y 基于线性关系并添加了噪声。将 numpy 数组转换为 PyTorch 张量,方便后续在模型中…

数据分析系列--④RapidMiner进行关联分析(案例)

一、核心概念 1.项集(Itemset) 2.规则(Rule) 3.支持度(Support) 3.1 支持度的定义 3.2 支持度的意义 3.3 支持度的应用 3.4 支持度的示例 3.5 支持度的调整 3.6 支持度与其他指标的关系 4.置信度&#xff0…

国产之光DeepSeek架构理解与应用分析

目录 初步探索DeepSeek的设计 一、核心架构设计 二、核心原理与优化 三、关键创新点 四、典型应用场景 五、与同类模型的对比优势 六、未来演进方向 从投入行业生产的角度看 一、DeepSeek的核心功能扩展 二、机械电子工程产业中的具体案例 1. 预测性维护(Predictive…

Golang :用Redis构建高效灵活的应用程序

在当前的应用程序开发中,高效的数据存储和检索的必要性已经变得至关重要。Redis是一个快速的、开源的、内存中的数据结构存储,为各种应用场景提供了可靠的解决方案。在这个完整的指南中,我们将学习什么是Redis,通过Docker Compose…

基于互联网+智慧水务信息化整体解决方案

智慧水务的概述与发展背景 智慧水务是基于互联网、云计算、大数据、物联网等先进技术,对水务行业的工程建设、生产管理、管网运营、营销服务及企业综合管理等业务进行全面智慧化管理的创新模式。它旨在解决水务企业分散经营、管理水平不高、投资不足等问题。 水务…

力扣动态规划-16【算法学习day.110】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向(例如想要掌握基础用法,该刷哪些题?建议灵神的题单和代码随想录)和记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关…

使用 Tauri 2 + Next.js 开发跨平台桌面应用实践:Singbox GUI 实践

Singbox GUI 实践 最近用 Tauri Next.js 做了个项目 - Singbox GUI,是个给 sing-box 用的图形界面工具。支持 Windows、Linux 和 macOS。作为第一次接触这两个框架的新手,感觉收获还蛮多的,今天来分享下开发过程中的一些经验~ 为啥要做这个…

langgraph实现 handsoff between agents 模式 (1)

官网示例代码 from typing_extensions import Literal from langchain_core.messages import ToolMessage from langchain_core.tools import tool from langgraph.graph import MessagesState, StateGraph, START from langgraph.types import Command from langchain_openai…

Redis代金卷(优惠卷)秒杀案例-单应用版

优惠卷表:优惠卷基本信息,优惠金额,使用规则 包含普通优惠卷和特价优惠卷(秒杀卷) 优惠卷的库存表:优惠卷的库存,开始抢购时间,结束抢购时间.只有特价优惠卷(秒杀卷)才需要填写这些信息 优惠卷订单表 卷的表里已经有一条普通优惠卷记录 下面首先新增一条秒杀优惠卷记录 { &quo…

观察者模式和订阅发布模式的关系

有人把观察者模式等同于发布订阅模式,也有人认为这两种模式存在差异,本质上就是调度的方法不同。 发布订阅模式: 观察者模式: 相比较,发布订阅将发布者和观察者之间解耦。(发布订阅有调度中心处理)

Ethflow Round 1 (Codeforces Round 1001, Div. 1 + Div. 2)(A,B,C,E1)

题目链接:Dashboard - Ethflow Round 1 (Codeforces Round 1001, Div. 1 Div. 2) - Codeforces A. String 思路 可以发现最小反转次数就是把每个1单独反转为0就行,即统计1的个数 代码 void solve(){string s;cin>>s;int sum0;for(int i0;i&l…

FreeRTOS从入门到精通 第十五章(事件标志组)

参考教程:【正点原子】手把手教你学FreeRTOS实时系统_哔哩哔哩_bilibili 一、事件标志组简介 1、概述 (1)事件标志位是一个“位”,用来表示事件是否发生。 (2)事件标志组是一组事件标志位的集合&#x…

Leetcode:541

1,题目 2,思路 用List集合来装字符串其中每k个为一个元素单位我们根据题目意思就可以明白list中偶数位需要反转reverse,奇数保持原样再全部拼接一块最后return tostring 3,代码 import java.util.ArrayList; import java.util.…

C语言指针专题四 -- 多级指针

目录 1. 多级指针的核心原理 1. 多级指针的定义 2. 内存结构示意图 3. 多级指针的用途 2. 编程实例 实例1:二级指针操作(修改一级指针的值) 实例2:动态二维数组(二级指针) 实例3:三级指…

Linux运维之Linux的安装和配置

目录 Linux的基本概念: 1.为什么要使用Linux? 2.什么是Linux? Linux的安装和配置: 1.下载Linux的虚拟机和镜像文件: 1.1下载虚拟机 1.2下载镜像文件 2.在虚拟机或者物理机中安装Linux操作系统 3.配置虚拟机的…

第一个3D程序!

运行效果 CPP #include <iostream> #include <fstream> #include <string> #include <cmath>#include <GL/glew.h> #include <GLFW/glfw3.h> #include <glm/glm.hpp> #include <glm/gtc/type_ptr.hpp> #include <glm/gtc/…