【python】python基于机器学习与数据分析的手机特性关联与分类预测(源码+数据集)【独一无二】

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


python基于机器学习与数据分析的手机特性关联与分类预测(源码+数据集)【独一无二】


目录

  • python基于机器学习与数据分析的手机特性关联与分类预测(源码+数据集)【独一无二】
  • 一、设计要求
  • 二、设计思路
      • **1. 数据读取与预处理**
      • **2. 描述性统计与分布分析**
      • **3. 分类变量分布分析**
      • **4. 热力图分析(RAM与内核搭配特征)**
      • **5. 线性回归模型**
      • **6. 聚类分析**
  • 三、可视化分析


一、设计要求

本项目的目标是分析智能手机数据,揭示其特性与价格区间的联系,并利用机器学习技术进行预测和聚类。设计涵盖数据预处理、探索性分析、模型构建与性能评估:

  1. 数据预处理

    • 读取多个数据源,清理缺失值、重复值和异常值。
    • 新增业务特征 “屏幕尺寸”,提升数据分析深度。
  2. 数据分析与可视化

    • 基于核心数值特征(如手机重量、电池容量等)进行统计特征分析。
    • 利用饼图、直方图、热力图等方式展现变量分布和关联。
  3. 监督学习

    • 应用线性回归模型预测价格区间(连续变量)。
    • 使用 SVM 进行价格区间分类,并分析特征重要性。
  4. 无监督学习

    • 对手机特性进行聚类分析,揭示潜在分组模式。
    • 利用肘部法选择最佳聚类数,并评估聚类效果(轮廓系数等)。
  5. 可视化与解读

    • 通过高质量图表展示分析结果,为决策提供支持。
    • 输出模型性能指标(如准确率、决定系数)并解释结果的商业意义。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


二、设计思路

1. 数据读取与预处理

目的:

  • 利用 pandas 读取 Excel 文件,合并数据集,并进行清洗与扩展,以生成干净、可信的数据供后续使用。

关键环节:

  • 加载两个 Excel 数据集。
  • 检查缺失值并填充(使用bfill策略填充)。
  • 删除重复数据行。
  • 删除特定非法值(如 m_dep 非正数的非法行)。
  • 创建业务衍生字段 “屏幕尺寸”,计算公式为屏幕宽高的欧几里得长度。
import pandas as pd# 读取 Excel 文件
file1 = "phone1.xlsx"
file2 = "phone2.xlsx"# 使用 openpyxl 引擎读取数据
df1 = pd.read_excel(file1, engine='openpyxl')
df2 = pd.read_excel(file2, engine='openpyxl')# 合并数据集
merged_df = pd.concat([df1, df2], ignore_index=True)# 代码略...至少10行
# 代码略...至少10行
# 代码略...至少10行# 新增字段“屏幕尺寸”
if 'px_height' in merged_df.columns and 'px_width' in merged_df.columns:merged_df['屏幕尺寸'] = (merged_df['px_height']**2 + merged_df['px_width']**2) ** 0.5

核心作用:

  • 数据预处理旨在防止后续分析因数据空值、重复值或非法值而产生报错或异常结果。
  • “屏幕尺寸” 字段的添加是基于业务逻辑拓展的重要步骤,为模型提供了额外的特征支持。

2. 描述性统计与分布分析

目的:

  • 对特定数值变量(如 mobile_wtbattery_power)进行数据分布的探索,以及统计特征(均值、中位数、众数)的提取。

代码实现:

  • 显示均值、中位数和众数:
# 核心数值特征的统计描述
print("描述性统计分析 - 手机基本属性")
for col in ['mobile_wt', 'battery_power', 'pc']:if col in merged_df.columns:
# 代码略...至少10行
# 代码略...至少10行
# 代码略...至少10行mode = merged_df[col].mode()[0] if not merged_df[col].mode().empty else Noneprint(f"{col} - 平均值: {mean:.2f}, 中位数: {median}, 众数: {mode}")
  • 绘制数据分布:
    通过直方图 + 核密度估计展示数据分布,便于判断变量的分布是否对称,是否存在偏态。
    在这里插入图片描述
import matplotlib.pyplot as plt# 分布特征:带核密度估计的直方图
fig, axes = plt.subplots(3, 1, figsize=(8, 12))for i, col in enumerate(['mobile_wt', 'battery_power', 'pc']):if col in merged_df.columns:axes[i].hist(merged_df[col], bins=20, density=True, alpha=0.6, label=f'{col}直方图')merged_df[col].plot.kde(ax=axes[i], color='red', label=f'{col}核密度估计')
# 代码略...至少10行
# 代码略...至少10行
# 代码略...至少10行axes[i].legend()plt.tight_layout()

输出如下:

  • 从分布图可以直观查看特征数据的分布形状:
    • 若为双峰形态或偏态分布,可考虑使用对数变换等手段消除偏态。
    • 若为近似正态分布,则适合直接用于建模。

3. 分类变量分布分析

目的:

  • 分析手机特征(如是否支持双卡、是否支持 4G)的类别分布,展示百分比占比。

代码实现:

  • 利用饼状图显示不同类别型特征的分布比例。
# 分类特征分布分析 - 饼图
categorical_cols = ['dual_sim', 'four_g', 'three_g', 'touch_screen']for col in categorical_cols:if col in merged_df.columns:# 统计频数value_counts = merged_df[col].value_counts(normalize=True) * 100  # 计算百分比labels = value_counts.index.map(lambda x: f"{x} ({value_counts[x]:.2f}%)")
# 代码略...至少10行
# 代码略...至少10行
# 代码略...至少10行plt.show()

特点:

  • 各类别的比例直接反映了特征倾斜性。例如,若 dual_sim 中某类占比远超50%,则该变量可能对模型贡献不足。

在这里插入图片描述

4. 热力图分析(RAM与内核搭配特征)

目的:

  • 使用交叉表和热力图分析不同运行内存与核心数的分布特征,观察变量是否存在某种偏好模式。

代码实现:

import seaborn as sns# RAM、内核分组后统计频次,绘制热力图
# 代码略...至少10行
# 代码略...至少10行
# 代码略...至少10行plt.figure(figsize=(8, 6))
sns.heatmap(group_counts, annot=True, fmt="d", cmap="YlGnBu")
plt.title("运行内存与内核分组统计热力图")
plt.xlabel("处理器内核数分组")
plt.ylabel("运行内存分组")
plt.show()

分析:

  • 热力图便于观察分组统计结果。若某些分组对应的频数特别高,表明这些分组有更高的用户偏好或商业价值。

5. 线性回归模型

目的:

  • 预测 price_range,并解读特征对价格的线性贡献。

代码实现:

  • 建模:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score# 提取特征及目标变量
X = merged_df[['battery_power', 'ram', 'n_cores']]  # 自变量
# 代码略...至少10行
# 代码略...至少10行
# 代码略...至少10行# 数据集拆分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 线性回归模型
model = LinearRegression()
# 代码略...至少10行
# 代码略...至少10行
# 代码略...至少10行# 模型评估
print("线性回归模型的系数:", model.coef_)
print("线性回归模型的截距:", model.intercept_)
# 代码略...至少10行
# 代码略...至少10行
# 代码略...至少10行
print(f"均方误差(MSE):{mse:.2f}")
print(f"决定系数(R²):{r2:.2f}")
  • 分析结果:
    • 若 R² 接近 1,说明模型有较强的拟合能力。
    • 若某些特征系数(model.coef_)的值很小或负数,表明这些特征对预测贡献甚微或为负面影响。

在这里插入图片描述

6. 聚类分析

目的:

  • 用无监督学习了解手机特性分组行为。

代码实现:

from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler# 特征标准化
features = merged_df[['px_height', 'px_width', '屏幕尺寸', 'four_g']].copy()
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)# K 均值聚类分析
optimal_k = 4
# 代码略...至少10行
# 代码略...至少10行
# 代码略...至少10行
features['Cluster'] = clusters# 聚类评价
from sklearn.metrics import silhouette_score
# 代码略...至少10行
# 代码略...至少10行
# 代码略...至少10行
print(f"轮廓系数 (Silhouette Score): {silhouette_avg:.2f}")

输出:

  • 聚类标签反映了不同组群手机可能对应的特性偏好。

这段代码从数据清洗到回归、分类和聚类,每一步都设计得合理、高效,且充分考虑了数据和任务特点,为分析智能设备提供了系统支持。


三、可视化分析

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

---

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10613.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【leetcode详解】T3175(一点反思)

解题心得 要写出一个好的程序,有效解决问题,思路上就不能“太乖” —— 不能被题目的叙述过程所束缚,而是力求细思问题,抽象化问题,并找到背后的逻辑;最后抓住核心对象,去除多余项,…

图论——最小生成树

最小生成树 给定一个无向图,在图中选择若干条边把图的所有节点连起来。要求边长之和最小。在图论中,叫做求最小生成树。 prim算法 prim 算法采用的是一种贪心的策略。 每次将离连通部分的最近的点和点对应的边加入的连通部分,连通部分逐渐扩大…

jvisualvm工具使用

jvisualvm 是JDK自带的具有图形界面操作功能的JVM性能监控和诊断工具,它不仅能分析和诊断堆转储文件,在线实时监控本地JVM进程,还能监控远程服务器上的JVM进程。 1 分析服务器下载dump文件 1)在我们在安装JDK的bin目录双击jvisa…

C++ list

list需知: list不会出现insert迭代器失效问题 链表插入不会影响原有数据相对位置,且不用扩容 但是erase会导致相对数据位置移动,所有其erase会导致迭代器失效 list排序效率很低 不建议使用 小规模数据量可以使用,比较方便 此外…

DeepSeek-R1 论文解读 —— 强化学习大语言模型新时代来临?

近年来,人工智能(AI)领域发展迅猛,大语言模型(LLMs)为通用人工智能(AGI)的发展开辟了道路。OpenAI 的 o1 模型表现非凡,它引入的创新性推理时缩放技术显著提升了推理能力…

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户注册

🧸安清h:个人主页 🎥个人专栏:【计算机网络】【Mybatis篇】 🚦作者简介:一个有趣爱睡觉的intp,期待和更多人分享自己所学知识的真诚大学生。 目录 🎯项目基本介绍 🚦项…

蓝桥杯思维训练营(一)

文章目录 题目总览题目详解翻之一起做很甜的梦 蓝桥杯的前几题用到的算法较少,大部分考察的都是思维能力,方法比较巧妙,所以我们要积累对应的题目,多训练 题目总览 翻之 一起做很甜的梦 题目详解 翻之 思维分析:一开…

【AI】DeepSeek 概念/影响/使用/部署

在大年三十那天,不知道你是否留意到,“deepseek”这个词出现在了各大热搜榜单上。这引起了我的关注,出于学习的兴趣,我深入研究了一番,才有了这篇文章的诞生。 概念 那么,什么是DeepSeek?首先百…

minimind - 从零开始训练小型语言模型

大语言模型(LLM)领域,如 GPT、LLaMA、GLM 等,虽然它们效果惊艳, 但动辄10 Bilion庞大的模型参数个人设备显存远不够训练,甚至推理困难。 几乎所有人都不会只满足于用Lora等方案fine-tuing大模型学会一些新的…

【机器学习】自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

一、使用pytorch框架实现逻辑回归 1. 数据部分: 首先自定义了一个简单的数据集,特征 X 是 100 个随机样本,每个样本一个特征,目标值 y 基于线性关系并添加了噪声。将 numpy 数组转换为 PyTorch 张量,方便后续在模型中…

数据分析系列--④RapidMiner进行关联分析(案例)

一、核心概念 1.项集(Itemset) 2.规则(Rule) 3.支持度(Support) 3.1 支持度的定义 3.2 支持度的意义 3.3 支持度的应用 3.4 支持度的示例 3.5 支持度的调整 3.6 支持度与其他指标的关系 4.置信度&#xff0…

国产之光DeepSeek架构理解与应用分析

目录 初步探索DeepSeek的设计 一、核心架构设计 二、核心原理与优化 三、关键创新点 四、典型应用场景 五、与同类模型的对比优势 六、未来演进方向 从投入行业生产的角度看 一、DeepSeek的核心功能扩展 二、机械电子工程产业中的具体案例 1. 预测性维护(Predictive…

Golang :用Redis构建高效灵活的应用程序

在当前的应用程序开发中,高效的数据存储和检索的必要性已经变得至关重要。Redis是一个快速的、开源的、内存中的数据结构存储,为各种应用场景提供了可靠的解决方案。在这个完整的指南中,我们将学习什么是Redis,通过Docker Compose…

基于互联网+智慧水务信息化整体解决方案

智慧水务的概述与发展背景 智慧水务是基于互联网、云计算、大数据、物联网等先进技术,对水务行业的工程建设、生产管理、管网运营、营销服务及企业综合管理等业务进行全面智慧化管理的创新模式。它旨在解决水务企业分散经营、管理水平不高、投资不足等问题。 水务…

力扣动态规划-16【算法学习day.110】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向(例如想要掌握基础用法,该刷哪些题?建议灵神的题单和代码随想录)和记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关…

使用 Tauri 2 + Next.js 开发跨平台桌面应用实践:Singbox GUI 实践

Singbox GUI 实践 最近用 Tauri Next.js 做了个项目 - Singbox GUI,是个给 sing-box 用的图形界面工具。支持 Windows、Linux 和 macOS。作为第一次接触这两个框架的新手,感觉收获还蛮多的,今天来分享下开发过程中的一些经验~ 为啥要做这个…

langgraph实现 handsoff between agents 模式 (1)

官网示例代码 from typing_extensions import Literal from langchain_core.messages import ToolMessage from langchain_core.tools import tool from langgraph.graph import MessagesState, StateGraph, START from langgraph.types import Command from langchain_openai…

Redis代金卷(优惠卷)秒杀案例-单应用版

优惠卷表:优惠卷基本信息,优惠金额,使用规则 包含普通优惠卷和特价优惠卷(秒杀卷) 优惠卷的库存表:优惠卷的库存,开始抢购时间,结束抢购时间.只有特价优惠卷(秒杀卷)才需要填写这些信息 优惠卷订单表 卷的表里已经有一条普通优惠卷记录 下面首先新增一条秒杀优惠卷记录 { &quo…

观察者模式和订阅发布模式的关系

有人把观察者模式等同于发布订阅模式,也有人认为这两种模式存在差异,本质上就是调度的方法不同。 发布订阅模式: 观察者模式: 相比较,发布订阅将发布者和观察者之间解耦。(发布订阅有调度中心处理)

Ethflow Round 1 (Codeforces Round 1001, Div. 1 + Div. 2)(A,B,C,E1)

题目链接:Dashboard - Ethflow Round 1 (Codeforces Round 1001, Div. 1 Div. 2) - Codeforces A. String 思路 可以发现最小反转次数就是把每个1单独反转为0就行,即统计1的个数 代码 void solve(){string s;cin>>s;int sum0;for(int i0;i&l…