激活函数总结(十九):激活函数补充(ISRU、ISRLU)

激活函数总结(十九):激活函数补充

  • 1 引言
  • 2 激活函数
    • 2.1 Inverse Square Root Unit (ISRU)激活函数
    • 2.2 Inverse Square Root Linear Unit (ISRLU)激活函数
  • 3. 总结

1 引言

在前面的文章中已经介绍了介绍了一系列激活函数 (SigmoidTanhReLULeaky ReLUPReLUSwishELUSELUGELUSoftmaxSoftplusMishMaxoutHardSigmoidHardTanhHardswishHardShrinkSoftShrinkTanhShrinkRReLUCELUReLU6GLUSwiGLUGTUBilinearReGLUGEGLUSoftminSoftmax2dLogsoftmaxIdentityLogSigmoidBent IdentityAbsoluteBipolarBipolar SigmoidSinusoidCosineArcsinhArccoshArctanhLeCun TanhTanhExpGaussianGCUASUSQUNCUDSUSSUSReLUBReLUPELUPhishRBFSQ-RBF)。在这篇文章中,会接着上文提到的众多激活函数继续进行介绍,给大家带来更多不常见的激活函数的介绍。这里放一张激活函数的机理图:
在这里插入图片描述

2 激活函数

2.1 Inverse Square Root Unit (ISRU)激活函数

Inverse Square Root Unit(ISRU)是一种非线性激活函数,它在神经网络中用于引入非线性变换。其数学表达式和数学图像分别如下所示:
I S R U ( x ) = x 1 + a x 2 ISRU(x) = \frac{x}{\sqrt{1+ax^2}} ISRU(x)=1+ax2 x在这里插入图片描述
优点:

  • 非线性性质: ISRU 激活函数引入了非线性性质,有助于神经网络模型捕捉数据中的复杂模式。
  • 平滑性: ISRU 在输入值的范围内具有连续和平滑的性质,这对于梯度计算和反向传播有益。
  • 参数调整: 通过调整参数 α,您可以自由地控制激活函数的形状,使其适应不同的数据分布和任务需求。
  • 避免梯度消失: 相对于一些激活函数,如 Sigmoid 和 Tanh,ISRU 在输入较大的范围内可以避免梯度消失问题。

缺点:

  • 计算复杂性: ISRU 涉及平方根的计算,这可能在计算上相对于一些简单的激活函数(如 ReLU)而言较为复杂。
  • 参数调整: 调整参数 α 需要更多的实验调优,以找到最佳参数设置。
  • 可解释性: ISRU 不是一个广泛使用的激活函数,因此可能需要更多的背景知识来解释其作用和效果。

该激活函数在当前环境下很少使用。。。。

2.2 Inverse Square Root Linear Unit (ISRLU)激活函数

Inverse Square Root Linear Unit(ISRLU)是一种非线性激活函数,它是 Rectified Linear Unit(ReLU)的一种扩展。ISRLU 激活函数引入了一个可学习的参数,使得在输入为时,激活函数的输出与输入之间存在非线性关系。其数学表达式和数学图像分别如下所示:
I S R L U ( x ) = { x 1 + a x 2 , if  x < 0 x , if  x ≥ 0 ISRLU(x) = \begin{cases} \frac{x}{\sqrt{1+ax^2}}, & \text{if } x < 0 \\ x, & \text{if } x \geq 0 \\ \end{cases} ISRLU(x)={1+ax2 x,x,if x<0if x0在这里插入图片描述
优点:

  • 非线性性质: ISRLU 激活函数在输入为时引入了非线性性质,有助于神经网络模型更好地捕捉数据中的复杂模式。
  • 平滑性: ISRLU 在输入为负时是平滑的,这对于梯度计算和反向传播有益
  • 自适应性: 参数 ( α \alpha α) 可以通过训练适应不同的数据分布,使 ISRLU 的负半部分适应数据的特性。
  • 避免梯度消失: 相对于一些激活函数,如 Sigmoid 和 Tanh,ISRLU 在输入较大的范围内可以避免梯度消失问题。

缺点:

  • 计算复杂性: ISRLU 涉及平方根的计算,这可能在计算上相对于一些简单的激活函数(如 ReLU)而言较为复杂。
  • 参数调整: 调整参数 ( α \alpha α) 需要更多的实验调优,以找到最佳参数设置。
  • 可解释性: ISRLU 不是一个广泛使用的激活函数,因此可能需要更多的背景知识来解释其作用和效果。

该激活函数在当前环境下很少使用。。。。但是从其性质上可以感觉到是一个不错的激活函数,可能会在某些应用中得到应用。。。。

3. 总结

到此,使用 激活函数总结(十九) 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。如果存在没有提及的激活函数也可以在评论区提出,后续会对其进行添加!!!!

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/106268.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python科研数据可视化

在过去的20 年中&#xff0c;随着社会产生数据的大量增加&#xff0c;对数据的理解、解释与决策的需求也随之增加。而固定不变是人类本身&#xff0c;所以我们的大脑必须学会理解这些日益增加的数据信息。所谓“一图胜千言”&#xff0c;对于数量、规模与复杂性不断增加的数据&…

基础论文学习(5)——MAE

MAE&#xff1a;Masked Autoencoders Are Scalable Vision Learners Self-Supervised Learning step1&#xff1a;先用无标签数据集&#xff0c;把参数从一张白纸训练到初步预训练模型&#xff0c;可以得到数据的 Visual Representationstep2&#xff1a;再从初步成型&#x…

Linux(Ubuntu)安装docker

2017年的3月1号之后&#xff0c;Docker 的版本命名开始发生变化&#xff0c;同时将 CE 版本和 EE 版本进行分开。 Docker社区版&#xff08;CE&#xff09;&#xff1a;为了开发人员或小团队创建基于容器的应用,与团队成员分享和自动化的开发管道。docker-ce 提供了简单的安装…

行式存储与列式存储

1.概述 数据处理大致可分为两大类&#xff0c;联机事务处理OLTP(on-line transaction processing) 和联机分析处理OLAP(on-line analytical processing)。 OLTP是传统关系型数据库的主要应用&#xff0c;用来执行一些基本的、日常的事务处理&#xff0c;比如数据库记录的增、删…

Vue2-快速搭建pc端后台管理系统

一.推荐二次开发框架 vue-element-admin Star(84k)vue-antd-admin Star(3.5k) 二.vue-element-admin 官网链接:https://panjiachen.github.io/vue-element-admin-site/zh/ 我这里搭建的是基础模版vue-admin-template(推荐) # 克隆项目 git clone https://github.com/PanJi…

html-dom核心内容--四要素

1、结构 HTML DOM (文档对象模型) 当网页被加载时&#xff0c;浏览器会创建页面的文档对象模型&#xff08;Document Object Model&#xff09;。 2、核心关注的内容&#xff1a;“元素”&#xff0c;“属性”&#xff0c;“修改样式”&#xff0c;“事件反应”。>四要素…

静态代码扫描持续构建(Jenkins)

前提条件 已正确安装、配置Jenkins环境&#xff0c;并装有 Gradle 插件、HTML 插件、SVN 插件等。如下图所示&#xff1a; 已正确安装、配置android sdk&#xff0c;在cmd窗口输入命令“android -h”,回车 配置步骤 打开Jenkins&#xff0c;新建一个job&#xff0c;输入项目…

uniapp日期选择组件优化

<uni-forms-item label="出生年月" name="birthDate"><view style="display: flex;flex-direction: row;align-items: center;height: 100%;"><view class="" v-

Cookie for Mac:隐私保护工具保护您的在线隐私

随着互联网的发展&#xff0c;我们每天都会浏览各种网站&#xff0c;享受在线购物、社交娱乐和学习资料等各种便利。然而&#xff0c;您是否曾经遇到过需要频繁输入用户名和密码的情况&#xff1f;或者不方便访问您常用的网站&#xff1f;如果是这样&#xff0c;那么Cookie for…

C语言:指针和数组(看完拿捏指针和数组)

目录 数组名的理解&#xff1a; 一维数组&#xff1a; 解析&#xff1a; 字符数组&#xff1a; 解析&#xff1a; 解析&#xff1a; 字符串数组&#xff1a; 解析&#xff1a; 解析&#xff1a; 一级指针&#xff1a; 解析&#xff1a; 解析&#xff1a; 二维数组&a…

SQL注入之HTTP头部注入

文章目录 cookie注入练习获取数据库名称获取版本号 base64注入练习获取数据库名称获取版本号 user-agent注入练习获取数据库名称获取版本号 cookie注入练习 向服务器传参三大基本方法:GPC GET方法&#xff0c;参数在URL中 POST&#xff0c;参数在body中 COOKIE&#xff0c;参数…

部署 ssm 项目到云服务器上(购买云服务器 + 操作远程云服务器 + 服务器中的环境搭建 + 部署项目到服务器)

部署 Web 项目 1、获取 Linux 环境1.1、如何去买一个云服务器1.2、远程操作云服务器1.3、在 Linux 系统中搭建 Java Web 的运行环境。1&#xff09;安装 JDK&#xff08;使用包管理器 yum 来安装&#xff09;2&#xff09; 安装Tomcat3&#xff09;安装 MySQL。 1.4、在云服务器…

【Python爬虫】使用代理ip进行网站爬取

前言 使用代理IP进行网站爬取可以有效地隐藏你的真实IP地址&#xff0c;让网站难以追踪你的访问行为。本文将介绍Python如何使用代理IP进行网站爬取的实现&#xff0c;包括代理IP的获取、代理IP的验证、以及如何把代理IP应用到爬虫代码中。 1. 使用代理IP的好处 在进行网站爬…

前端开发工具: VSCode

VSCode 安装使用教程&#xff08;图文版&#xff09; | arry老师的博客-艾编程 1. 下载 在官方网站&#xff1a;https://code.visualstudio.com/ 下载最新版本的 VSCode 即可 2. VSCode 常见插件安装 所有插件安装后,需要重启一下才生效 2.1 简体中文语言包 2.2 编辑器主…

贝叶斯公式中的动词 命名技巧

一项血液化验有95%的把我诊断某种疾病&#xff0c;但是&#xff0c;这项化验用于健康人也会有1%的“伪阳性”结果(即如果一个健康人接受这项化验&#xff0c;则化验结果乌镇此人患有该疾病的概率是0.01)。如果该疾病的患者事实上只占总人口的0.5%&#xff0c;若某人化验结果为阳…

CSS内边距和外边距属性

外边距属性用margin&#xff1b;padding属性叫填充&#xff0c;或者也叫内边距&#xff1b; margin:标签与标签的距离&#xff0c;到包围它的元素的边框的距离&#xff1b; padding&#xff1a;内边距&#xff0c;用于控制内容与边框之间的距离&#xff1b; CSS padding&…

框架分析(5)-Django

框架分析&#xff08;5&#xff09;-Django 专栏介绍Django核心概念以及组件讲解模型&#xff08;Model&#xff09;视图&#xff08;View&#xff09;模板&#xff08;Template&#xff09;路由&#xff08;URLconf&#xff09;表单&#xff08;Form&#xff09;后台管理&…

Unable to Locate package python2| Linux Ubuntu系统下python2的安装

Linux Ubuntu系统下python2的安装 FSL的安装脚本是用Python2写的&#xff0c;新版本的Ubuntu &#xff08;16以后&#xff09;在默认情况下没有安装Python2。在终端输入 python2&#xff0c;若提示没有相应的命令&#xff0c;则需要先安装Python2&#xff0c;如下指令&#xf…

【30天熟悉Go语言】10 Go异常处理机制

作者&#xff1a;秃秃爱健身&#xff0c;多平台博客专家&#xff0c;某大厂后端开发&#xff0c;个人IP起于源码分析文章 &#x1f60b;。 源码系列专栏&#xff1a;Spring MVC源码系列、Spring Boot源码系列、SpringCloud源码系列&#xff08;含&#xff1a;Ribbon、Feign&…

java八股文面试[数据结构]——List和Set的区别

List和Set是用来存放集合的接口&#xff0c;并且二者都继承自接接口Collection List 中的元素存放是有序的&#xff0c;可以存放重复的元素&#xff0c;检索效率较高&#xff0c;插入删除效率较低。 Set 没有存放顺序不能存放重复元素检索效率较低&#xff0c;插入删除效率较…