同态比较算法

参考文献:

  1. [PS73] Paterson M S, Stockmeyer L J. On the number of nonscalar multiplications necessary to evaluate polynomials[J]. SIAM Journal on Computing, 1973, 2(1): 60-66.
  2. [IZ21] Iliashenko I, Zucca V. Faster homomorphic comparison operations for BGV and BFV[J]. Proceedings on Privacy Enhancing Technologies, 2021, 2021(3): 246-264.

文章目录

  • 快速的多项式求值算法
    • 算法 A
    • 算法 B
    • 算法 C
  • 基于插值的比较算法
    • 有限域上的比较函数
    • 双变元多项式插值
    • 单变元多项式插值
    • 其他应用

快速的多项式求值算法

对于 n n n 长多项式 P ( x ) P(x) P(x),如果要计算 n n n 个单位根上的函数值 P ( ξ i ) P(\xi^i) P(ξi),那么使用 FFT/NTT 可以实现 O ( n log ⁡ n ) O(n\log n) O(nlogn) 的复杂度,均摊成本 O ( log ⁡ n ) O(\log n) O(logn)。但是如果我们对单个的任意点 x x x 求值 P ( x ) P(x) P(x),那应该怎么快速计算呢?这儿的 “快速” 指的是更少的 “非标量乘法” 数量。标量乘法的开销类似于加法,后文我们默认 “乘法” 代指非标量乘法。

Horner rule ∑ i = 0 n a i x i = ( ⋯ ( ( a n x + a n − 1 ) x + a n − 2 ) ⋯ ) x + a 0 \sum_{i=0}^na_ix^i = (\cdots((a_nx+a_{n-1})x+a_{n-2})\cdots)x+a_0 i=0naixi=(((anx+an1)x+an2))x+a0,一共需要 n n n 次乘法。

[PS73] 提出了只需 O ( n ) O(\sqrt n) O(n ) 次乘法的多项式单点求值算法。首先可以证明,多项式求值的复杂度下界为 O ( n ) O(\sqrt n) O(n )

在这里插入图片描述

然后 [PS73] 依次提出了三种多项式求值算法。

算法 A

定理:度数 n n n 的任意多项式,存在使用了 n / 2 + O ( log ⁡ n ) n/2+O(\log n) n/2+O(logn) 次乘法的求值算法。

方便起见,我们假设 n = 2 m − 1 n=2^m-1 n=2m1(多项式长度 2 m 2^m 2m),同时多项式是首一的,

  1. 首先预计算 x 2 , x 4 , x 8 , ⋯ , x 2 m − 1 x^2,x^4,x^8,\cdots,x^{2^{m-1}} x2,x4,x8,,x2m1,花费 log ⁡ n \log n logn 次乘法

  2. 给定某 2 p − 1 2p-1 2p1 次的首一多项式,把它写成如下形式:
    x 2 p − 1 + a 2 p − 2 x 2 p − 2 + ⋯ + a 1 x + a 0 = ( x p + c ) ( x p − 1 + a 2 p − 2 x p − 2 + ⋯ + a p + 1 x + a p ) + ( x p − 1 + b p − 2 x p − 2 + ⋯ + b 1 x + b 0 ) \begin{aligned} &\,\, x^{2p-1}+a_{2p-2}x^{2p-2}+\cdots+a_1x+a_0\\ =&\,\, (x^p+c)(x^{p-1}+a_{2p-2}x^{p-2}+\cdots+a_{p+1}x+a_p)\\ +&\,\, (x^{p-1}+b_{p-2}x^{p-2}+\cdots+b_1x+b_0) \end{aligned} =+x2p1+a2p2x2p2++a1x+a0(xp+c)(xp1+a2p2xp2++ap+1x+ap)(xp1+bp2xp2++b1x+b0)

    其中 c = a p − 1 − 1 c=a_{p-1}-1 c=ap11 b j = a j − c a p + j b_j=a_j-ca_{p+j} bj=ajcap+j 是常数,且 x p x^p xp 已经预计算过了

  3. 于是我们把 2 p − 1 2p-1 2p1 次的首一多项式,分解为了两个 p − 1 p-1 p1 次的首一多项式,继续递归求值。乘法复杂度的递归公式为 N ( 2 p − 1 ) = 2 N ( p − 1 ) + 1 N(2p-1)=2N(p-1)+1 N(2p1)=2N(p1)+1,初值 N ( 1 ) = 0 N(1)=0 N(1)=0,因此 N ( n ) = ( n + 1 ) / 2 − 1 ≈ n / 2 N(n)=(n+1)/2-1 \approx n/2 N(n)=(n+1)/21n/2

对于任意的 n n n,我们将 n n n 二进制分解,于是可以把多项式拆分为若干长度为 2 i 2^i 2i分片,分别执行求值算法后,再乘以 x 2 , x 4 , x 8 , ⋯ , x 2 ⌊ log ⁡ n ⌋ x^2,x^4,x^8,\cdots,x^{2^{\lfloor\log n\rfloor}} x2,x4,x8,,x2logn 组装起来。这额外花费 log ⁡ n \log n logn 次乘法。

算法 B

定理:度数 n n n 的任意多项式,存在使用了 2 n 2\sqrt{n} 2n 次乘法的求值算法。

我们假设 n = k m − 1 n=km-1 n=km1(多项式长度 k m km km),

  1. 首先预计算 x 2 , x 3 , ⋯ , x k x^2,x^3,\cdots,x^k x2,x3,,xk,花费 k k k 次乘法

  2. 利用 Horner rule 的推广版本,将多项式写成如下形式:
    a k m − 1 x k m − 1 + a k m − 2 x k m − 2 + ⋯ + a 1 x + a 0 = ( ⋯ ( ( a k m − 1 x k − 1 + ⋯ + a k ( m − 1 ) ) x k + ( a k ( m − 1 ) − 1 x k − 1 + ⋯ + a k ( m − 2 ) ) ) x k + ⋯ ) x k + ( a k − 1 x k − 1 + ⋯ + a 1 x + a 0 ) \begin{aligned} &\,\, a_{km-1}x^{km-1}+a_{km-2}x^{km-2}+\cdots+a_1x+a_0\\ =&\,\, \Bigg(\cdots\Big((a_{km-1}x^{k-1}+\cdots+a_{k(m-1)})x^k\\ &\,\, +(a_{k(m-1)-1}x^{k-1}+\cdots+a_{k(m-2)})\Big)x^k + \cdots\Bigg)x^k\\ &\,\, +(a_{k-1}x^{k-1}+\cdots+a_1x+a_0) \end{aligned} =akm1xkm1+akm2xkm2++a1x+a0(((akm1xk1++ak(m1))xk+(ak(m1)1xk1++ak(m2)))xk+)xk+(ak1xk1++a1x+a0)

    因为 x 2 , ⋯ . x k − 1 , x k x^2,\cdots.x^{k-1},x^k x2,.xk1,xk 都预计算过,因此乘法开销为 m m m

  3. 总复杂度为 k + m k+m k+m,选取 k = n k=\sqrt{n} k=n 时最优化

算法 C

定理:度数 n n n 的任意多项式,存在使用了 2 n + O ( log ⁡ n ) \sqrt{2n}+O(\log n) 2n +O(logn) 次乘法的求值算法。

我们假设 n = k ⋅ ( 2 m − 1 ) n=k\cdot (2^m-1) n=k(2m1),同时多项式是首一的,

  1. 预计算 x 2 , x 3 , ⋯ , x k x^2,x^3,\cdots,x^k x2,x3,,xk,花费 k k k 次乘法

  2. 预计算 x 2 k , x 4 k , x 8 k , ⋯ , x k ⋅ 2 m − 1 x^{2k},x^{4k},x^{8k},\cdots,x^{k\cdot2^{m-1}} x2k,x4k,x8k,,xk2m1,花费 m m m 次乘法

  3. 给定某 k ( 2 p − 1 ) k(2p-1) k(2p1) 次的首一多项式,把它写成如下形式:
    x k ( 2 p − 1 ) + a k ( 2 p − 1 ) − 1 x k ( 2 p − 1 ) − 1 + ⋯ + a 1 x + a 0 = ( x k ( p − 1 ) + a k ( 2 p − 1 ) − 1 x k ( 2 p − 1 ) − 1 + ⋯ + a k ( p − 1 ) ) x k p + ( a k ( p − 1 ) − 1 x k p − 1 + ⋯ + a 1 x + a 0 ) \begin{aligned} &\,\, x^{k(2p-1)}+a_{k(2p-1)-1}x^{k(2p-1)-1}+\cdots+a_1x+a_0\\ =&\,\, (x^{k(p-1)}+a_{k(2p-1)-1}x^{k(2p-1)-1}+\cdots+a_{k(p-1)})x^{kp}\\ +&\,\, (a_{k(p-1)-1}x^{kp-1}+\cdots+a_1x+a_0) \end{aligned} =+xk(2p1)+ak(2p1)1xk(2p1)1++a1x+a0(xk(p1)+ak(2p1)1xk(2p1)1++ak(p1))xkp(ak(p1)1xkp1++a1x+a0)

    简记为 p ( x ) = q ( x ) ⋅ x k p + r ( x ) p(x)=q(x)\cdot x^{kp}+r(x) p(x)=q(x)xkp+r(x),其中 q ( x ) q(x) q(x)度数 k ( p − 1 ) k(p-1) k(p1) 的首一多项式 r ( x ) r(x) r(x) 是度数至多为 k p − 1 kp-1 kp1 的多项式,其中 x k p x^{kp} xkp 已经预计算过了

  4. 再计算带余除法(注意这与 x x x 的取值无关,可以预计算) r ( x ) − x k ( p − 1 ) = c ( x ) ⋅ q ( x ) + s ( x ) r(x)-x^{k(p-1)} = c(x) \cdot q(x)+s(x) r(x)xk(p1)=c(x)q(x)+s(x),其中 c ( x ) c(x) c(x) 度数至多为 k − 1 k-1 k1 s ( x ) s(x) s(x) 度数至多为 k ( p − 1 ) − 1 k(p-1)-1 k(p1)1,那么就写成了
    p ( x ) = ( x k p + c ( x ) ) ⋅ q ( x ) + ( x k ( p − 1 ) + s ( x ) ) p(x) = (x^{kp}+c(x)) \cdot q(x) + (x^{k(p-1)}+s(x)) p(x)=(xkp+c(x))q(x)+(xk(p1)+s(x))

    其中 x k ( p − 1 ) + s ( x ) x^{k(p-1)}+s(x) xk(p1)+s(x) 也是度数 k ( p − 1 ) k(p-1) k(p1) 的首一多项式

  5. 对于上述的两个 k ( p − 1 ) k(p-1) k(p1) 次多项式递归求值,乘法复杂度的递归公式为 N ( k ( 2 p − 1 ) ) = 2 N ( k ( p − 1 ) ) + 1 N(k(2p-1))=2N(k(p-1))+1 N(k(2p1))=2N(k(p1))+1,初值 N ( k ) = 0 N(k)=0 N(k)=0,因此 N ( n ) = ( n / k + 1 ) / 2 − 1 ≈ n / 2 k N(n)=(n/k+1)/2-1\approx n/2k N(n)=(n/k+1)/21n/2k,选取 k = n / 2 k=\sqrt{n/2} k=n/2 时最优化

对于任意的 n n n,类似于算法 A 进行分片,需要额外的 log ⁡ 2 n \log \sqrt{2n} log2n 次乘法。

基于插值的比较算法

有限域上的比较函数

一般地,我们使用布尔比较电路:
E Q ( a , b ) : = ∏ i = 1 l ( a i ⊕ b i ⊕ 1 ) L T ( a , b ) : = ∑ i = 1 l ( a i ⊕ 1 ) ⋅ b i ∏ j = i + 1 l ( a j ⊕ b j ⊕ 1 ) \begin{aligned} EQ(a,b) &:= \prod_{i=1}^l (a_i \oplus b_i \oplus 1)\\ LT(a,b) &:= \sum_{i=1}^l(a_i\oplus 1)\cdot b_i\prod_{j=i+1}^l (a_j \oplus b_j \oplus 1)\\ \end{aligned} EQ(a,b)LT(a,b):=i=1l(aibi1):=i=1l(ai1)bij=i+1l(ajbj1)

[IZ21] 提出了 G F ( q ) , q = p d GF(q),q=p^d GF(q),q=pd 上的比较电路。令 S ⊆ G F ( q ) S \subseteq GF(q) SGF(q) 是素域子集,其中多项式系数的取值范围是 [ B ] = { 0 , 1 , ⋯ , B } [B]=\{0,1,\cdots,B\} [B]={0,1,,B}。再令 S ′ = { 0 , 1 , ⋯ , B l − 1 } , l ≤ d S'=\{0,1,\cdots,B^{l}-1\}, l\le d S={0,1,,Bl1},ld 是整数的取值范围,我们将整数写作 B B B 进制形式 a = a l ⋯ a 2 a 1 a=a_l\cdots a_2a_1 a=ala2a1,其中 a i ∈ [ B ] a_i \in [B] ai[B] 是整数。我们定义如下双射:
ι : S ′ → S ∑ i = 1 l a i B i − 1 ↦ ∑ i = 1 l a i x i − 1 \begin{aligned} \iota: S' &\to S\\ \sum_{i=1}^{l} a_i B^{i-1} &\mapsto \sum_{i=1}^{l} a_i x^{i-1} \end{aligned} ι:Si=1laiBi1Si=1laixi1

根据这个映射,我们可以从 a , b ∈ S ′ a,b \in S' a,bS 的全序关系,诱导出 ι ( a ) , ι ( b ) ∈ S ⊆ G F ( q ) \iota(a),\iota(b) \in S \subseteq GF(q) ι(a),ι(b)SGF(q) 的全序关系。即:根据整数的大小关系,诱导出有限域元素的大小关系

给定任意两个有限域元素 X , Y ∈ S X,Y \in S X,YS,它们的大小关系构成了一个函数 L T S ( X , Y ) LT_S(X,Y) LTS(X,Y)。根据有限域插值定理,任意的多变元函数,都存在唯一的多变元多项式,使得两者是同一个函数性。

在这里插入图片描述

上述的 χ : α ↦ α q − 1 \chi: \alpha \mapsto \alpha^{q-1} χ:ααq1示性函数。乘法循环群的阶为 q − 1 q-1 q1,因此 χ ( α ) = 1 ⟺ α ≠ 0 \chi(\alpha)=1 \iff \alpha \neq 0 χ(α)=1α=0。实际上,有限域上的判等电路就是
E Q S ( X , Y ) : = 1 − χ ( X − Y ) EQ_S(X, Y) := 1-\chi(X-Y) EQS(X,Y):=1χ(XY)

根据字典序,可以进一步将整数表示为 “ S S S 进制”,从而实现任意大整数的比较运算。将整数写作 a = a l ⋯ a 2 a 1 a=a_l\cdots a_2a_1 a=ala2a1,其中 a i ∈ S a_i \in S aiS 是有限域元素。那么,
E Q S l ( a , b ) : = ∏ i = 1 l E Q S ( a i , b i ) L T S l ( a , b ) : = ∑ i = 1 l L T S ( a i , b i ) ∏ j = i + 1 l E Q S ( a j , b j ) \begin{aligned} EQ_{S^l}(a,b) &:= \prod_{i=1}^l EQ_S(a_i,b_i)\\ LT_{S^l}(a,b) &:= \sum_{i=1}^l LT_S(a_i,b_i) \prod_{j=i+1}^l EQ_S(a_j,b_j)\\ \end{aligned} EQSl(a,b)LTSl(a,b):=i=1lEQS(ai,bi):=i=1lLTS(ai,bi)j=i+1lEQS(aj,bj)

下面,我们看一看如何实现基本的比较函数 L T S ( X , Y ) LT_S(X,Y) LTS(X,Y)。简单起见,我们考虑在素域 S ⊆ G F ( p ) S\subseteq GF(p) SGF(p) 上的比较函数。对于扩域 G F ( p d ) GF(p^d) GF(pd),也是类似的思路。

双变元多项式插值

我们令 S = { 0 , 1 , ⋯ , p − 1 } S = \{0,1,\cdots,p-1\} S={0,1,,p1},那么根据整数间全序关系,可以诱导出如下的双变元函数

在这里插入图片描述

根据插值定理,我们可以得到一个双变元多项式
P ( X , Y ) : = ∑ a = 0 p − 2 E Q S ( X , a ) ∑ b = a + 1 p − 1 E Q S ( Y , b ) P(X,Y) := \sum_{a=0}^{p-2} EQ_S(X,a) \sum_{b=a+1}^{p-1} EQ_S(Y,b) P(X,Y):=a=0p2EQS(X,a)b=a+1p1EQS(Y,b)

[IZ21] 指出上述多项式可以化简为如下形式,它的总度数为 p p p

在这里插入图片描述

主要的计算开销是 ∑ i j a i j X i Y j = ∑ i ( ∑ j a i j X i ) Y j \sum_{ij} a_{ij} X^i Y^j = \sum_{i} \left(\sum_j a_{ij} X^i\right) Y^j ijaijXiYj=i(jaijXi)Yj,只需要 O ( p ) O(p) O(p) 次乘法,乘法深度为 O ( log ⁡ p ) O(\log p) O(logp)

单变元多项式插值

我们令 S = { 0 , 1 , ⋯ , ( p − 1 ) / 2 } S=\{0,1,\cdots,(p-1)/2\} S={0,1,,(p1)/2},并且将有限域分为两部分
G F ( p ) + = S , G F ( p ) − = { − ( p − 1 ) / 2 , ⋯ , − 2 , − 1 } GF(p)^+=S,\,\, GF(p)^-=\{-(p-1)/2,\cdots,-2,-1\} GF(p)+=S,GF(p)={(p1)/2,,2,1}

根据整数间大小关系,可以诱导出函数 X < Y ⟺ Z : = ( X − Y ) ∈ G F ( p ) − X<Y \iff Z:=(X-Y) \in GF(p)^- X<YZ:=(XY)GF(p)

根据插值定理,我们可以得到一个单变元多项式
Q ( X , Y ) : = ∑ a = − ( p − 1 ) / 2 − 1 E Q s ( Z , a ) Q(X,Y) := \sum_{a=-(p-1)/2}^{-1} EQ_s(Z,a) Q(X,Y):=a=(p1)/21EQs(Z,a)

[IZ21] 指出上述多项式可以化简为如下形式,

在这里插入图片描述

注意到 ∑ i c i ( X − Y ) i \sum_{i}c_i(X-Y)^i ici(XY)i 的幂次都是奇数,因此可以写作 Z g ( Z 2 ) Zg(Z^2) Zg(Z2) 的形式,其中 g ( x ) g(x) g(x) 是度数 ( p − 3 ) / 2 (p-3)/2 (p3)/2 的单变元多项式。根据 Horber 法则,我们用 Paterson-Stockmeyer algorithm 计算多项式求值,从而只需要 O ( p / 2 ) O(\sqrt{p/2}) O(p/2 ) 的乘法数量。

不过需要注意的是,单变元插值 S = { 0 , 1 , ⋯ , ( p − 1 ) / 2 } S=\{0,1,\cdots,(p-1)/2\} S={0,1,,(p1)/2} 比双变元插值 S = { 0 , 1 , ⋯ , p − 1 } S=\{0,1,\cdots,p-1\} S={0,1,,p1} 的范围小了一半,因此对于 l l l S S S 进制数,表示范围缩小为 1 / 2 l 1/2^l 1/2l,不得不延长 l l l l ⋅ log ⁡ p log ⁡ p − 1 \dfrac{l\cdot\log p}{\log p-1} logp1llogp 以保证具有相同的表示范围。

其他应用

实现最大值、最小值,
min ⁡ ( X , Y ) = X ⋅ L T ( X , Y ) + Y ⋅ ( 1 − L T ( X , Y ) ) = Y + ( X − Y ) ⋅ L T ( X , Y ) = Y + Z ⋅ Q ( X , Y ) = p + 1 2 ( X + Y ) + g ′ ( Z 2 ) , max ⁡ ( X , Y ) = Y ⋅ L T ( X , Y ) + X ⋅ ( 1 − L T ( X , Y ) ) = X + ( Y − X ) ⋅ L T ( X , Y ) = X − Z ⋅ Q ( X , Y ) = p + 1 2 ( X + Y ) − g ′ ( Z 2 ) \begin{aligned} \min(X,Y) &= X \cdot LT(X,Y) + Y \cdot (1-LT(X,Y))\\ &= Y + (X-Y) \cdot LT(X,Y)\\ &= Y + Z \cdot Q(X,Y)\\ &= \dfrac{p+1}{2}(X+Y) + g'(Z^2), \\ \max(X,Y) &= Y \cdot LT(X,Y) + X \cdot (1-LT(X,Y))\\ &= X + (Y-X) \cdot LT(X,Y)\\ &= X - Z \cdot Q(X,Y)\\ &= \dfrac{p+1}{2}(X+Y) - g'(Z^2)\\ \end{aligned} min(X,Y)max(X,Y)=XLT(X,Y)+Y(1LT(X,Y))=Y+(XY)LT(X,Y)=Y+ZQ(X,Y)=2p+1(X+Y)+g(Z2),=YLT(X,Y)+X(1LT(X,Y))=X+(YX)LT(X,Y)=XZQ(X,Y)=2p+1(X+Y)g(Z2)

其中 g ′ ( x ) g'(x) g(x) 是度数 ( p − 1 ) / 2 (p-1)/2 (p1)/2 的单变元多项式,使用 [PS73] 仅需 O ( p / 2 ) O(\sqrt{p/2}) O(p/2 ) 次乘法。

实现 ReLU 函数,
R e L U ( X ) : = max ⁡ ( X , 0 ) = p + 1 2 X − g ′ ( X 2 ) ReLU(X) := \max(X,0) = \dfrac{p+1}{2}X - g'(X^2)\\ ReLU(X):=max(X,0)=2p+1Xg(X2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/106346.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

redis7高级篇3 数据量亿级别的统计分析(hyperloglog,bitmap,geo)

一 亿级别统计分类 1.1 统计分类 1.聚合统计&#xff1a;统计多个集合聚合的结果&#xff0c;也就是多个集合之间交并差的统计。 2.排序统计&#xff1a;在需要展示最新列表&#xff0c;排行榜等场景时&#xff0c;如果数据更新频繁或者需要分页时&#xff0c;建议使用zset12…

滚珠螺杆导程对精度有影响吗?

滚珠螺杆的导程也称螺距&#xff0c;即螺杆每旋转一周螺母直线运动的距离&#xff0c;导程与直线速度有关&#xff0c;在输入转速一定的情况下&#xff0c;导程越大速度越快。正常来说&#xff0c;选择导程时&#xff0c;尽量选5和10最好。 很多人一直觉得导程会影响滚珠螺杆的…

【安卓】自定义View实现画板涂鸦等功能

一、实现效果 二、代码 1、MainActivity.class package com.lsl.mydrawingboarddemo;import androidx.appcompat.app.AppCompatActivity; import androidx.core.content.ContextCompat;import android.os.Bundle; import android.os.Handler; import android.view.View; impo…

73 # 发布自己的 http-server 到 npm

1、添加 .npmignore 文件&#xff0c;忽略不需要的文件 public2、去官网https://www.npmjs.com/检查自己的包名是否被占用 3、切换到官方源&#xff0c;然后检查确认 nrm use npm nrm ls4、登录 npm 账号 npm login5、发布 npm publish6、查看发布情况&#xff0c;发布成功…

npm 卸载 vuecli后还是存在

运行了npm uninstall vue-cli -g&#xff0c;之后是up to date in&#xff0c;然后vue -V&#xff0c;版本号一直都在&#xff0c;说明没有卸载掉 1、执行全局卸载命令 npm uninstall vue-cli -g 2、删除vue原始文件 查看文件位置&#xff0c;找到文件删掉 where vue 3、再…

山西电力市场日前价格预测【2023-08-27】

日前价格预测 预测明日&#xff08;2023-08-27&#xff09;山西电力市场全天平均日前电价为318.11元/MWh。其中&#xff0c;最高日前电价为356.66元/MWh&#xff0c;预计出现在19: 15。最低日前电价为273.48元/MWh&#xff0c;预计出现在04: 30。 价差方向预测 1&#xff1a; 实…

Jenkins的定时任务配置

jenkins配置定时任务位置(点击日程表的问好可查看语法配置) jenkins的定时任务的参数 # 定时任务参数(每个参数之间使用tab键或空格分隔)MINUTE HOUR DOM MONTH DOW 参数解释取值范围 MINUTE 分钟0-59HOUR小时0-23DOM一月的天数1-31MONTH月份1-12DOW 一周的天数0…

实验七 Linux 内核移植

【实验目的】 掌握 Linux 内核配置和编译的基本方法 【实验环境】 ubuntu 14.04 发行版FS4412 实验平台交叉编译工具&#xff1a;arm-none-linux-gnueabi- 【注意事项】 实验步骤中以“$”开头的命令表示在 ubuntu 环境下执行&#xff0c;以“#”开头的命令表 示在开发板下…

PHP 安装Composer,vue前端依赖包

电脑安装Composer 官网下载&#xff1a;https://getcomposer.org/Composer-Setup.exe 后端安装&#xff1a; 检查是否安装依赖&#xff1a; 安装Composer install 或 Composer i 前端安装&#xff1a; yarn install 安装依赖

vr内容编辑软件降低了虚拟现实项目开发门槛

VR虚拟场景编辑器是一种专门用于创建、修改和设计虚拟场景的工具。它利用vr虚拟现实技术&#xff0c;让用户可以在三维空间中直接对场景进行操作和编辑。这种编辑器的出现&#xff0c;使得用户可以更加直观、自由地进行场景设计和制作&#xff0c;为诸多领域带来了新的可能性。…

Linux(基础篇一)

Linux基础篇 Linux基础篇一1. Linux文件系统与目录结构1.1 Linux文件系统1.2 Linux目录结构 2. VI/VIM编辑器2.1 vi/vim是什么2.2 模式间的转换2.3 一般模式2.4 插入模式2.4.1 进入编辑模式2.4.2 退出编辑模式 2.5 命令模式 3. 网络配置3.1 网络连接模式3.2 修改静态ip3.3 配置…

AI夏令营第三期用户新增挑战赛学习笔记

1、数据可视化 1.数据探索和理解&#xff1a;数据可视化可以帮助我们更好地理解数据集的特征、分布和关系。通过可视化数据&#xff0c;我们可以发现数据中的模式、异常值、缺失值等信息&#xff0c;从而更好地了解数据的特点和结构。2.特征工程&#xff1a;数据可视化可以帮助…

WPF基础入门-Class5-WPF命令

WPF基础入门 Class5-WPF命令 1、xaml编写一个button&#xff0c;Command绑定一个命令 <Grid><ButtonWidth"100"Height"40" Command"{Binding ShowCommand}"></Button> </Grid>2、编写一个model.cs namespace WPF_Le…

033 - date 和 time

date类型&#xff1a; 该DATE类型用于具有日期部分但没有时间部分的值。MySQL检索并DATE以 格式显示 值 。支持的范围是 到。 YYYY-MM-DD1000-01-019999-12-31 -- 创建表&#xff0c;字段类型是date&#xff1a; create table test_date01 (a date); -- 正确格式插入数据 in…

OceanMind海睿思签约常州市建筑科学研究院,打造检验检测行业数字化转型标杆

近日&#xff0c;中新赛克海睿思 与 中国知名综合性建筑研究和科技创新型高科技企业——常州市建筑科学研究院集团股份有限公司&#xff08;以下简称“建科股份”&#xff09;达成深度战略合作&#xff0c;为建科股份提供行业领先的数据工程建设服务&#xff0c;携手推进检验检…

java八股文面试[JVM]——双亲委派模型

1.当AppClassLoader去加载一个class时&#xff0c;它首先不会自己去尝试加载这个类&#xff0c;而是把类加载请求委托给父加载器ExtClassLoader去完成。 2.当ExtClassLoader去加载一个class时&#xff0c;它首先也不会去尝试加载这个类&#xff0c;而是把类加载请求委托给父加载…

python面试题--1

目录 python面试题 1&#xff09;什么是Python&#xff1f;使用Python有什么好处&#xff1f; 2&#xff09;什么是PEP 8&#xff1f; 3&#xff09;什么是序列化和非序列化&#xff1f; 4&#xff09;如何解释Python&#xff1f; 5&#xff09;如何在Python中内存管理&a…

2023年国赛 高教社杯数学建模思路 - 案例:退火算法

文章目录 1 退火算法原理1.1 物理背景1.2 背后的数学模型 2 退火算法实现2.1 算法流程2.2算法实现 建模资料 ## 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 退火算法原理 1.1 物理背景 在热力学上&a…

微软宣布在 Excel 中使用 Python:结合了 Python 的强大功能和 Excel 的灵活性。

文章目录 Excel 中的 Python 有何独特之处&#xff1f;1. Excel 中的 Python 是为分析师构建的。高级可视化机器学习、预测分析和预测数据清理 2. Excel 中的 Python 通过 Anaconda 展示了最好的 Python 分析功能。3. Excel 中的 Python 在 Microsoft 云上安全运行&#xff0c;…

C++ 异常

一、异常概念 异常是一种处理错误的方式&#xff0c;当一个函数发现自己无法处理的错误时就可以抛出异常&#xff0c;让函数的直接或间接 的调用者处理这个错误。 throw: 当问题出现时&#xff0c;程序会抛出一个异常。这是通过使用 throw 关键字来完成的。 catch: 在您想要…