2023年国赛 高教社杯数学建模思路 - 案例:退火算法

文章目录

    • 1 退火算法原理
      • 1.1 物理背景
        • 1.2 背后的数学模型
    • 2 退火算法实现
      • 2.1 算法流程
      • 2.2算法实现
  • 建模资料

## 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 退火算法原理

1.1 物理背景

在热力学上,退火(annealing)现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。大自然在缓慢降温(亦即,退火)时,可“找到”最低能量状态:结晶。但是,如果过程过急过快,快速降温(亦称「淬炼」,quenching)时,会导致不是最低能态的非晶形。

如下图所示,首先(左图)物体处于非晶体状态。我们将固体加温至充分高(中图),再让其徐徐冷却,也就退火(右图)。加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小(此时物体以晶体形态呈现)。

在这里插入图片描述

1.2 背后的数学模型

如果你对退火的物理意义还是晕晕的,没关系我们还有更为简单的理解方式。想象一下如果我们现在有下面这样一个函数,现在想求函数的(全局)最优解。如果采用Greedy策略,那么从A点开始试探,如果函数值继续减少,那么试探过程就会继续。而当到达点B时,显然我们的探求过程就结束了(因为无论朝哪个方向努力,结果只会越来越大)。最终我们只能找打一个局部最后解B。

在这里插入图片描述

根据Metropolis准则,粒子在温度T时趋于平衡的概率为exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变数,k为Boltzmann常数。Metropolis准则常表示为
在这里插入图片描述

Metropolis准则表明,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE) = exp( dE/(kT) )。其中k是一个常数,exp表示自然指数,且dE<0。所以P和T正相关。这条公式就表示:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(因为退火的过程是温度逐渐下降的过程),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。随着温度T的降低,P(dE)会逐渐降低。

我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。也就是说,在用固体退火模拟组合优化问题,将内能E模拟为目标函数值 f,温度T演化成控制参数 t,即得到解组合优化问题的模拟退火演算法:由初始解 i 和控制参数初值 t 开始,对当前解重复“产生新解→计算目标函数差→接受或丢弃”的迭代,并逐步衰减 t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值 t 及其衰减因子Δt 、每个 t 值时的迭代次数L和停止条件S。

2 退火算法实现

2.1 算法流程

(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L
(2) 对k=1,……,L做第(3)至第6步:
(3) 产生新解S′
(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2
在这里插入图片描述

2.2算法实现

import numpy as np
import matplotlib.pyplot as plt
import randomclass SA(object):def __init__(self, interval, tab='min', T_max=10000, T_min=1, iterMax=1000, rate=0.95):self.interval = interval                                    # 给定状态空间 - 即待求解空间self.T_max = T_max                                          # 初始退火温度 - 温度上限self.T_min = T_min                                          # 截止退火温度 - 温度下限self.iterMax = iterMax                                      # 定温内部迭代次数self.rate = rate                                            # 退火降温速度#############################################################self.x_seed = random.uniform(interval[0], interval[1])      # 解空间内的种子self.tab = tab.strip()                                      # 求解最大值还是最小值的标签: 'min' - 最小值;'max' - 最大值#############################################################self.solve()                                                # 完成主体的求解过程self.display()                                              # 数据可视化展示def solve(self):temp = 'deal_' + self.tab                                   # 采用反射方法提取对应的函数if hasattr(self, temp):deal = getattr(self, temp)else:exit('>>>tab标签传参有误:"min"|"max"<<<')x1 = self.x_seedT = self.T_maxwhile T >= self.T_min:for i in range(self.iterMax):f1 = self.func(x1)delta_x = random.random() * 2 - 1if x1 + delta_x >= self.interval[0] and x1 + delta_x <= self.interval[1]:   # 将随机解束缚在给定状态空间内x2 = x1 + delta_xelse:x2 = x1 - delta_xf2 = self.func(x2)delta_f = f2 - f1x1 = deal(x1, x2, delta_f, T)T *= self.rateself.x_solu = x1                                            # 提取最终退火解def func(self, x):                                              # 状态产生函数 - 即待求解函数value = np.sin(x**2) * (x**2 - 5*x)return valuedef p_min(self, delta, T):                                      # 计算最小值时,容忍解的状态迁移概率probability = np.exp(-delta/T)return probabilitydef p_max(self, delta, T):probability = np.exp(delta/T)                               # 计算最大值时,容忍解的状态迁移概率return probabilitydef deal_min(self, x1, x2, delta, T):if delta < 0:                                               # 更优解return x2else:                                                       # 容忍解P = self.p_min(delta, T)if P > random.random(): return x2else: return x1def deal_max(self, x1, x2, delta, T):if delta > 0:                                               # 更优解return x2else:                                                       # 容忍解P = self.p_max(delta, T)if P > random.random(): return x2else: return x1def display(self):print('seed: {}\nsolution: {}'.format(self.x_seed, self.x_solu))plt.figure(figsize=(6, 4))x = np.linspace(self.interval[0], self.interval[1], 300)y = self.func(x)plt.plot(x, y, 'g-', label='function')plt.plot(self.x_seed, self.func(self.x_seed), 'bo', label='seed')plt.plot(self.x_solu, self.func(self.x_solu), 'r*', label='solution')plt.title('solution = {}'.format(self.x_solu))plt.xlabel('x')plt.ylabel('y')plt.legend()plt.savefig('SA.png', dpi=500)plt.show()plt.close()if __name__ == '__main__':SA([-5, 5], 'max')

实现结果

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/106321.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微软宣布在 Excel 中使用 Python:结合了 Python 的强大功能和 Excel 的灵活性。

文章目录 Excel 中的 Python 有何独特之处&#xff1f;1. Excel 中的 Python 是为分析师构建的。高级可视化机器学习、预测分析和预测数据清理 2. Excel 中的 Python 通过 Anaconda 展示了最好的 Python 分析功能。3. Excel 中的 Python 在 Microsoft 云上安全运行&#xff0c;…

C++ 异常

一、异常概念 异常是一种处理错误的方式&#xff0c;当一个函数发现自己无法处理的错误时就可以抛出异常&#xff0c;让函数的直接或间接 的调用者处理这个错误。 throw: 当问题出现时&#xff0c;程序会抛出一个异常。这是通过使用 throw 关键字来完成的。 catch: 在您想要…

XSS盲打练习(简单认识反射型、存储型XSS和cookie欺骗)

文章目录 挖掘cms网站XSS漏洞利用XSS平台盲打CMS&#xff0c;获取后台管理cookiecookie欺骗登录管理员账户 挖掘cms网站XSS漏洞 来到cms网站主页&#xff0c;发现有一个搜索框&#xff0c;输入任意内容后搜索&#xff0c;发现内容会回显&#xff0c;这里可能存在反射型XSS漏洞…

华为星闪,一项将 “ 更稳 WiFi ” 和 “ 更好蓝牙 ” 融合起来的通信标准

兼顾多用途和专业化的 AI 大模型、移除安卓代码的 HarmonyOS NEXT 、给折叠屏应用提供适配方向的《 折叠屏/平板应用体验评估标准 》。。。 不过除了这些比较贴近我们普通用户&#xff0c;容易讲清楚的东西&#xff0c;华为还官宣了一个大家可能没注意的黑科技&#xff1a; 星…

ModaHub魔搭社区:WinPlan经营大脑数据采集

目录 WinPlan经营大脑数据采集介绍 WinPlan经营大脑数据采集模版 WinPlan经营大脑数据采集介绍 基于指标、维度来创建业务表单,通过业务表单的形式来采集实际数据,最终生成企业统一的经营数据库。由于需要客户创建数据采集模版(业务流程),然后可以基于各个业务模版作为…

Hadoop学习一(初识大数据)

目录 一 什么是大数据&#xff1f; 二 大数据特征 三 分布式计算 四 Hadoop是什么? 五 Hadoop发展及版本 六 为什么要使用Hadoop 七 Hadoop vs. RDBMS 八 Hadoop生态圈 九 Hadoop架构 一 什么是大数据&#xff1f; 大数据是指无法在一定时间内用常规软件工具对其内…

数据结构:线性表之-顺序表

目录 1.线性表概念 1.1 什么是顺序列表 1.2 线性表 2.顺序表实现 将有以下功能&#xff1a; 详细过程 顺序表的动态存储 顺序表初始化 尾插 扩容 头插 更改后的尾插 尾删 头删 打印 释放内存 优化顺序表 (任意位置插入删除) 优化后的头插尾插 优化后的头删尾…

采用typescript编写,实现ofd前端预览、验章

前言 浏览器内核已支持pdf文件的渲染&#xff0c;这极大的方便了pdf文件的阅读和推广。ofd文件作为国产板式标准&#xff0c;急需一套在浏览器中渲染方案。 本人研究ofd多年&#xff0c;分别采用qt、c# 开发了ofd阅读器。本人非前端开发人员&#xff0c;对js、typescript并不熟…

linux+c+qt杂记

虚拟机网络选择&#xff1b; 桥接模式&#xff1a;设置window宿主机的IP/dns,把虚拟机设置为桥接即可。 切换到终端&#xff1a;我的是 ctrlaltFnF1&#xff1f; 问题解决&#xff1a; Ubuntu系统下载&#xff08;清华大学开源软件镜像站&#xff09;&#xff08;ubuntu-20.…

[Go版]算法通关村第十三关白银——数字数学问题之数组实现加法、幂运算

目录 数组实现加法专题题目&#xff1a;数组实现整数加法思路分析&#xff1a;数组末尾开始&#xff0c;逐个元素1&#xff0c;10就进位&#xff0c;!10就退出复杂度&#xff1a;时间复杂度 O ( n ) O(n) O(n)、空间复杂度 O ( n ) O(n) O(n)Go代码 题目&#xff1a;字符串加法…

python爬虫实战零基础(3)——某云音乐

爬取某些云网页音乐&#xff0c;无需app 分析网页第二种方式批量爬取 声明&#xff1a;仅供参考学习&#xff0c;参考&#xff0c;若有不足&#xff0c;欢迎指正 你是不是遇到过这种情况&#xff0c;在pc端上音乐无法下载&#xff0c;必须下载客户端才能下载&#xff1f; 那么&…

vue3 pdf、word等文件下载

效果&#xff1a; <div class"byLawBox"><div class"titleBox">规章制度公示</div><div class"contentBox"><TableList:loading"byLawloading"ref"byLawtablistRef":hasImport"false"…

C语言练习3(巩固提升)

C语言练习3 选择题 选择题 前言 奋斗是曲折的&#xff0c;“为有牺牲多壮志&#xff0c;敢教日月换新天”&#xff0c;要奋斗就会有牺牲&#xff0c;我们要始终发扬大无畏精神和无私奉献精神。奋斗者是精神最为富足的人&#xff0c;也是最懂得幸福、最享受幸福的人。正如马克思…

AIGC ChatGPT 制作地图可视化分析

地图可视化分析是一种将数据通过地图的形式进行展示的方法&#xff0c;可以让人们更加直观、快速、准确的理解和分析数据。以下是地图可视化分析的一些主要好处&#xff1a; 加强数据理解&#xff1a;地图可视化可以将抽象的数字转化为直观的图形&#xff0c;帮助我们更好地理解…

C#,《小白学程序》第一课:初识程序

曰&#xff1a;扫地僧练就绝世武功的目的是为了扫地更干净。 1 文本格式 /// <summary> /// 《小白学程序》第一课&#xff1a;初识程序 /// </summary> /// <param name"sender"></param> /// <param name"e"></param&…

怎样做好数字营销呢?

2023 年&#xff0c;数字营销将随着新技术、趋势和消费者行为的不断发展而不断发展。要在 2023 年在数字营销领域取得成功&#xff0c;请考虑以下策略&#xff1a; 1.内容质量和个性化&#xff1a; 专注于制作与目标受众产生共鸣的高质量且相关的内容。 根据用户偏好、行为和…

NFT Insider #104:The Sandbox:全新土地销售活动 Turkishverse 来袭

引言&#xff1a;NFT Insider由NFT收藏组织WHALE Members、BeepCrypto联合出品&#xff0c;浓缩每周NFT新闻&#xff0c;为大家带来关于NFT最全面、最新鲜、最有价值的讯息。每期周报将从NFT市场数据&#xff0c;艺术新闻类&#xff0c;游戏新闻类&#xff0c;虚拟世界类&#…

CSDN编程题-每日一练(2023-08-25)

CSDN编程题-每日一练&#xff08;2023-08-25&#xff09; 一、题目名称&#xff1a;影分身二、题目名称&#xff1a;小鱼的航程(改进版)三、题目名称&#xff1a;排查网络故障 一、题目名称&#xff1a;影分身 时间限制&#xff1a;1000ms内存限制&#xff1a;256M 题目描述&am…

kubernetes--技术文档--可视化管理界面dashboard安装部署

阿丹&#xff1a; 使用官方提供的可视化界面来完成。 Kubernetes Dashboard是Kubernetes集群的Web UI&#xff0c;用户可以通过Dashboard进行管理集群内所有资源对象&#xff0c;例如查看资源对象的运行情况&#xff0c;部署新的资源对象&#xff0c;伸缩Deployment中的Pod数量…

linux篇---使用systemctl start xxx启动自己的程序|开机启动|守护进程

linux篇---使用systemctl start xxx启动自己的程序|开机启动|守护进程 1、创建服务2、修改权限3、启动服务4、测试 机器&#xff1a;Nvidia Jetson Xavier系统&#xff1a;ubuntu 18.04 最近在使用symfony的console组件&#xff0c;需要执行一个后台的php进程&#xff0c;并且…